精英家教網 > 初中數學 > 題目詳情

【題目】若a,b,c表示△ABC的三邊長,且滿足+|a-12|+(b-13)2=0,則△ABC是( )

A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等邊三角形

【答案】B

【解析】

根據非負數的性質可得c-5=0,a-12=0,b-13=0,進一步即可得出a、b、c的值;根據等腰(或等邊)三角形的性質,判斷該三角形是否為等腰(或等邊)三角形;根據勾股定理的逆定理判斷該三角形是否為直角三角形,問題即可得解.

∵△ABC三邊長a,b,c滿足+|a-12|+(b-13)2=0,且≥0, |a-12|≥0,(b-13)2≥0,

∴c-5=0,a-12=0,b-13=0,

∴a=12,b=13,c=5.

∵a≠b≠c,且+=,

∴△ABC是直角三角形.

故選B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC,∠ACB=90°,AC=BC,CDABD,M,NAC,BC上的動點,且∠MDN=90°,下列結論:①AM=CN;②四邊形MDNC的面積為定值;③AM2+BN2=MN2;④NM平分∠CND.其中正確的是 (   )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據市場調查與預測,種植樹木的利潤y1與投資量x成正比例關系,種植花卉的利潤y2與投資量x的平方成正比例關系,并得到了表格中的數據.

投資量x(萬元)

2

種植樹木利潤y1(萬元)

4

種植花卉利潤y2(萬元)

2


(1)分別求出利潤y1與y2關于投資量x的函數關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關于m的函數關系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業(yè)戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在長方形OABC中,O為平面直角坐標系的原點,點A,點C分別在x軸,y軸上,點B坐標為(4,6),點P從點O出發(fā),以每秒2個單位長度的速度沿OCB方向運動,到點B停止.設點P運動的時間為t(秒).

1)點A的坐標為    ;

2)當t=1秒時,點P的坐標    ;

3)當點POC上運動,請直接寫出點P的坐標(用含有t的式子表示);

4)在移動過程中,當點Py軸的距離為1個單位長度時,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將三角形ABC沿射線BA方向平移到三角形A'B'C'的位置,連接AC'

1AA'CC'的位置關系為    

2)求證:∠A'+CAC'+AC'C=180°;

3)設ACB=y,試探索∠CAC'x,y之間的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校舉辦迎省運學生書畫展覽,現要在長方形展廳中劃出個形狀、大小完全一樣的小長方形(中陰影部分)區(qū)城擺放展覽作品.

1)如圖1,若大長方形的長和寬分別為米和米,求小長方形的長和寬;

2)如圖2,若大長方形的長和寬分別為,求出一個小長方形與一個大長方形周長的比值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯合購買一批足球運動裝備,市場調查發(fā)現:甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.

(1)求每套隊服和每個足球的價格是多少?

(2)若城區(qū)四校聯合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;

(3)假如你是本次購買任務的負責人,你認為到哪家商場購買比較合算?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“漢十”高速鐵路襄陽段正在建設中,甲、乙兩個工程隊計劃參與一項工程建設,甲隊單獨施工30天完成該項工程的 ,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點DE分別在邊BC,AC上,且DE∥AB,過點EEF⊥DE,交BC的延長線于點F.

1)求∠F的度數;

2)若CD=2,求DF的長.

查看答案和解析>>

同步練習冊答案