【題目】舍利生生塔位于晉祠南瑞,建于隋開皇年間,宋代重修,清乾隆十六年(1751年)重建.七屋八角,琉璃瓦頂,遠(yuǎn)遠(yuǎn)望去,高聳的古塔,映襯著藍(lán)天白云,甚是壯觀.原塔內(nèi)每層均有佛像,開4門8窗,憑窗遠(yuǎn)眺,晉祠內(nèi)外美景可一覽無余.如果在夕陽西下時(shí)欣賞寶塔,還會(huì)出現(xiàn)——天云錦、滿塔光輝的壯麗景觀,被譽(yù)為“寶塔披霞”.某數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)把“測量舍利生生塔高”作為一項(xiàng)課題活動(dòng),他們制定了測量方案,并利用課余時(shí)間完成了實(shí)地測量,測量結(jié)果如表:
課題 | 測量舍利生生塔高 | |||
測量示意圖 | 說明:某同學(xué)在地面上選擇點(diǎn)C,使用手持測角儀,測得此時(shí)樓頂A的仰角∠AHE=α,沿CB方向前進(jìn)到點(diǎn)D,測量出C,D之間的距離CD=xm,在點(diǎn)D使用手持測角儀,測得此時(shí)樓頂A的仰角∠AFE=β | |||
測量數(shù)據(jù) | α的度數(shù) | β的度數(shù) | CD的長度 | 該同學(xué)眼睛離地面的距離HC |
24° | 37° | 32m | 1.76m | |
… | … |
(1)請(qǐng)幫助該小組的同學(xué)根據(jù)上表中的測量數(shù)據(jù),求塔高AB.(結(jié)果精確到1m;參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°≈0.45,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(2)該小組要寫出一份完整的課題活動(dòng)報(bào)告,除上表中的項(xiàng)目外,你認(rèn)為還需要補(bǔ)充哪些項(xiàng)目?(寫出一個(gè)即可)
【答案】(1)約為38m;(2)還需要補(bǔ)充的項(xiàng)目為:計(jì)算過程,人員分工,指導(dǎo)教師,活動(dòng)感受等.(答案不唯一,合理即可.)
【解析】
(1)易知四邊形HCDF是矩形,四邊形FDBE是矩形,結(jié)合三角函數(shù)的定義求出AE和BE長即可得出答案;
(2)如要補(bǔ)充:計(jì)算過程,人員分工,指導(dǎo)教師,活動(dòng)感受等.(答案不唯一,合理即可.)
解:(1)在Rt△AFE中,tan∠AFE=,∠AFE=37°,
∴,
∵∠HCD=90°,∠FDC=90°,
∴HC∥FD,
又∵HC=FD,
∴四邊形HCDF是矩形,
∴HF=CD=32m.
在Rt△AHE中,tan∠AHE==≈0.45,
解得:AE=36.
同理,四邊形FDBE是矩形,則BE=FD=HC=1.76m,
∴AB=AE+BE=36+1.76=37.76≈38(m).
答:塔高AB約為38m.
(2)還需要補(bǔ)充的項(xiàng)目為:計(jì)算過程,人員分工,指導(dǎo)教師,活動(dòng)感受等.(答案不唯一,合理即可.)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于拋物線y=x2﹣2mx+m2+m﹣2,當(dāng)﹣1≤x≤2時(shí),函數(shù)的最小值為m,則m的值為( )
A.或B.或
C.或D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形的頂點(diǎn),動(dòng)點(diǎn),同時(shí)從點(diǎn)出發(fā),點(diǎn)沿射線方向以每秒個(gè)單位的速度運(yùn)動(dòng),點(diǎn)沿線段方向以每秒個(gè)單位的速度運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn),同時(shí)停止運(yùn)動(dòng),連接,設(shè)運(yùn)動(dòng)時(shí)間為(秒).
(1)求證;
(2)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),若雙曲線的圖象恰好過點(diǎn),試求的值;
(3)連接,當(dāng)為何值時(shí),為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=3,BC=4,O是BC的中點(diǎn),到點(diǎn)O的距離等于BC的所有點(diǎn)組成的圖形記為G,圖形G與AB交于點(diǎn)D.
(1)補(bǔ)全圖形并求線段AD的長;
(2)點(diǎn)E是線段AC上的一點(diǎn),當(dāng)點(diǎn)E在什么位置時(shí),直線ED與 圖形G有且只有一個(gè)交點(diǎn)?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形紙片ABCD沿直線BE折疊,點(diǎn)C恰好落在點(diǎn)G處,連接BG并延長,交CD于點(diǎn)H,延長EG交AD于點(diǎn)F,連接FH.若AF=FD=6cm,則FH的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y1=k1x的圖象與反比例函數(shù)y2=(x>0)的圖象相交于點(diǎn)A(,2),點(diǎn)B是反比例函數(shù)圖象上一點(diǎn),它的橫坐標(biāo)是3,連接OB,AB,則△AOB的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+b分別與x軸、y軸交于點(diǎn)A、B,且點(diǎn)A的坐標(biāo)為(4,0),四邊形ABCD是正方形.
(1)填空:b= ;
(2)求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)A、B除外),試探索在x上方是否存在另一個(gè)點(diǎn)N,使得以O、B、M、N為頂點(diǎn)的四邊形是菱形?若不存在,請(qǐng)說明理由;若存在,請(qǐng)求出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步發(fā)展基礎(chǔ)教育,自2014年以來,某縣加大了教育經(jīng)費(fèi)的投入,2014年該縣投入教育經(jīng)費(fèi)6000萬元。2016年投入教育經(jīng)費(fèi)8640萬元。假設(shè)該縣這兩年投入教育經(jīng)費(fèi)的年平均增長率相同。
(1)求這兩年該縣投入教育經(jīng)費(fèi)的年平均增長率;
(2)若該縣教育經(jīng)費(fèi)的投入還將保持相同的年平均增長率,請(qǐng)你預(yù)算2017年該縣投入教育經(jīng)費(fèi)多少萬元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校將舉辦“心懷感恩·孝敬父母”的活動(dòng),為此,校學(xué)生會(huì)就全校1 000名同學(xué)暑假期間平均每天做家務(wù)活的時(shí)間,隨機(jī)抽取部分同學(xué)進(jìn)行調(diào)查,并繪制成如下條形統(tǒng)計(jì)圖.
(1)本次調(diào)查抽取的人數(shù)為_______,估計(jì)全校同學(xué)在暑假期間平均每天做家務(wù)活的時(shí)間在40分鐘以上(含40分鐘)的人數(shù)為_______;
(2)校學(xué)生會(huì)擬在表現(xiàn)突出的甲、乙、丙、丁四名同學(xué)中,隨機(jī)抽取兩名同學(xué)向全校匯報(bào).請(qǐng)用樹狀圖或列表法表示出所有可能的結(jié)果,并求恰好抽到甲、乙兩名同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com