【題目】小明做游戲:游戲者分別轉(zhuǎn)動如圖的兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤各一次,當兩個轉(zhuǎn)盤的指針所指數(shù)字都為x24x+30的根時,他就可以獲得一次為大家表演節(jié)目的機會.

1)利用樹狀圖或列表的方法(只選一種)表示出游戲可能出現(xiàn)的所有結(jié)果;

2)求小明參加一次游戲就為大家表演節(jié)目的機會的概率是多少.

【答案】1)見解析;(2

【解析】

1)畫樹狀圖列出所有等可能結(jié)果;

2)由樹狀圖得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再依據(jù)概率公式計算可得.

解:(1)畫樹狀圖如下

;

2)由樹狀圖知共有6種等可能結(jié)果,

x24x+30的兩個根為13,

∴其中兩個轉(zhuǎn)盤的指針所指數(shù)字都為x24x+30的根的情況有2種,

所以小明參加一次游戲就為大家表演節(jié)目的概率為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在正方形中,,對角線交于點,在線段上,且,將射線繞點逆時針轉(zhuǎn),交于點, 的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】背景知識:如圖,在中,,若,則:

1)解決問題:

如圖(1),,是過點的直線,過點于點,連接,現(xiàn)嘗試探究線段、 之間的數(shù)量關(guān)系:過點,與交于點,易發(fā)現(xiàn)圖中出現(xiàn)了一對全等三角形,即,由此可得線段之間的數(shù)量關(guān)系是: ;

2)類比探究:

將圖(1)中的繞點旋轉(zhuǎn)到圖(2)的位置,其它條件不變,試探究線段、、之間的數(shù)量關(guān)系,并證明;

3)拓展應用:

將圖(1)中的繞點旋轉(zhuǎn)到圖 3)的位置,其它條件不變,若,則的長為 (直接寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,正確的有( 。

(1)、的平方根是±5;(2)、五邊形的內(nèi)角和是540°;(3)、拋物線y=x2+2x+4x軸無交點;(4)、等腰三角形兩邊長為6cm4cm,則它的周長是16cm.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在以AB為直徑的O上,BD與過點C的切線垂直于點D,BDO交于點E

1)求證:BC平分∠DBA;

2)連接AEAC,若cosABDOAm,請寫出求四邊形AEDC面積的思路.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=﹣x2+bx+cx軸交于A、B兩點(點A在點B的左側(cè)),點M為頂點,連接OM,若yx的部分對應值如表所示:

x

1

0

3

y

0

0

1)求拋物線的解析式;

2)拋物線與y軸交于點C,點Q是直線BC下方拋物線上一點,點Q的橫坐標為xQ.若SBCQSBOC,求xQ的取值范圍;

3)如圖2,平移此拋物線使其頂點為坐標原點,P0,﹣1)為y軸上一點,E為拋物線上y軸左側(cè)的一個動點,從E點發(fā)出的光線沿EP方向經(jīng)過y軸上反射后與此拋物線交于另一點F.則當E點位置變化時,直線EF是否經(jīng)過某個定點?如果是,請求出此定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個盒子中有1個紅球,1個白球和2個藍球,這些球除顏色外都相同,從中隨機摸出1個球,記下顏色后放回,再從中隨機摸出1個球.

兩次摸到相同顏色的球的概率;

在上面的問題中,如果從中隨機摸出1個球,記下顏色后不放回,再從中隨機摸出1個球,求兩次摸到的球的顏色能配成紫色紅色與藍色配成紫色的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線;,記為它與軸交于點;將繞點旋轉(zhuǎn),交軸于點;將,繞點旋轉(zhuǎn),交軸于點,……,若是其中某段拋物線上一點,則__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形 ABCD 中,E 為邊 BC 上一點,F 為邊 CD 上一點,且∠AEF=90°

1)如圖 1,若 ABCD 為正方形,E BC 中點,求證:

2)若 ABCD 為平行四邊形,∠AFE=ADC,

①如圖 2,若∠AFE=60°,求的值;

②如圖 3,若 AB=BCEC=2CF.直接寫出 cosAFE 值為   

查看答案和解析>>

同步練習冊答案