【題目】如圖,AB為⊙O的弦,C,D為直線AB上的兩點,OC=OD

1)尺規(guī)作圖:過點O作直線AB的垂線,垂足為點P(不寫作法,保留作圖痕跡);

2)在(1)的條件上,求證:AC=BD

【答案】1)作圖見解析;(2)證明見解析

【解析】

1)分別以A、B兩點為圓心,大于AB的長為半徑作弧,兩弧在AB下方交于一點,然后連接O和該交點交AB于點P即可;

2)根據(jù)三線合一和垂徑定理可得PC=PDPA=PB,然后根據(jù)等式的基本性質(zhì)即可得出結(jié)論.

解:(1)分別以A、B兩點為圓心,大于AB的長為半徑作弧,兩弧在AB下方交于一點,然后連接O和該交點交AB于點P,根據(jù)圓的性質(zhì)和作圖方法,OPAB,如下圖所示,點P即為所求.

2)∵OC=ODOPAB于點P

PC=PD,PA=PB

PC-PA=PD-PB

AC=BD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某種商品每天的銷售利潤元,銷售單價元,間滿足函數(shù)關系式:,其圖象如圖所示.

1)銷售單價為多少元時,該種商品每天的銷售利潤最大? 最大利潤為多少元?

2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于21 元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2021年世界園藝博覽會將在揚州棗林灣舉辦,有一塊棗林灣博覽會的直傳牌CD豎立在路邊,其中CB是支柱.小梅同學想計算出CD的長度.于是在A處測得支柱B處的俯角為30°.測得頂端D處的仰角為42°,同時測量出AB的長度是10mBC的長度是6m.求宜傳牌CD的長度(結(jié)果保留小數(shù)點后一位).(參考數(shù)據(jù):1.73,sin42°≈0.67cos42°≈0.74,tan42°≈0.90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉(zhuǎn)中心轉(zhuǎn)動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).

(1)當PEAB,PFBC時,如圖1,則的值為   ;

(2)現(xiàn)將三角板繞點P逆時針旋轉(zhuǎn)α(0°<α<60°)角,如圖2,求的值;

(3)在(2)的基礎上繼續(xù)旋轉(zhuǎn),當60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是等邊三角形內(nèi)一點,繞點 .按順時針方向旋轉(zhuǎn), 連接.

1)求證:是等邊三角形;

2)當時, 試判斷的形狀,并說明理由;

3)探究:為多少度時,是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一商品銷售某種商品,平均每天可售出20件,每件盈利50元.為了擴大銷售,增加盈利,該店采取了降價措施,在每件盈利不少于25元的前提下,經(jīng)過一段時間銷售,發(fā)現(xiàn)銷售單價每降低1元,平均每天可多售出2件.

1)若每件商品降價2元,則平均每天可售出______件;

2)當每件商品降價多少元時,該商品每天的銷售利潤為1600元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtAOB的一條直角邊OB在x軸上,雙曲線y=經(jīng)過斜邊OA的中點C,與另一直角邊交于點D.若SOCD=9,則SOBD的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一把直尺,的直角三角板和光盤如圖擺放,角與直尺交點,,則光盤的直徑是( )

A. 3 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年四川綿陽12分)如圖,已知矩形OABC中,OA=2,AB=4,雙曲線k0)與矩形兩邊AB、BC分別交于EF

1)若EAB的中點,求F點的坐標;

2)若將△BEF沿直線EF對折,B點落在x軸上的D點,作EG⊥OC,垂足為G,證明△EGD∽△DCF,并求k的值.

查看答案和解析>>

同步練習冊答案