如圖4,在△中,邊、上的中線、相交于點(diǎn),設(shè)向量,,如果用向量,表示向量,那么=    
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,AB=AC,CD⊥BA交BA的延長(zhǎng)線于點(diǎn)D.一正方形EFGH的一條邊EH與AC邊在一條直線上,另一條邊EF恰好經(jīng)過點(diǎn)B.
(1)在圖1中,請(qǐng)你通過觀察、測(cè)量BE與CD的長(zhǎng)度,猜想并寫出BE與CD滿足的數(shù)量關(guān)系,然后證明你的猜想;
(2)將正方形EFGH沿AC方向平移到圖2所示的位置時(shí),EH邊仍與AC邊在同一直線上,另一條邊EF交BC邊于點(diǎn)M,過點(diǎn)M作MN⊥BA于點(diǎn)N.此時(shí)請(qǐng)你通過觀察、測(cè)量ME、MN與CD的長(zhǎng)度,猜想并寫出ME、MN與CD之間滿足的數(shù)量關(guān)系,然后證明你的猜想;
(3)將正方形EFGH沿CA方向平移到圖3所示的位置時(shí),EH邊仍與AC邊在同一直線上,另一條邊EF的延長(zhǎng)線交CB邊的延長(zhǎng)線于點(diǎn)M,過點(diǎn)M作MN⊥AB交AB的延長(zhǎng)線于點(diǎn)N.此時(shí)請(qǐng)你猜想并寫出ME、MN與CD之間滿足的數(shù)量關(guān)系,不需證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索發(fā)現(xiàn):
(1)如圖1,在△ABC中,AD是BC邊上的中線,若△ABC的面積為S,則△ACD的面積為
 

聯(lián)系拓展:
(2)在圖2中,E、F分別是?ABCD的邊AB、BC的中點(diǎn),若?ABCD的面積為S,求四邊形BEDF的面積?并說明理由.
(3)在圖3中,E、F分別是?ABCD的邊AB、BC上的點(diǎn),且AE=
1
3
AB,BF=
1
3
BC,若?ABCD的面積為S,則四邊形BEDF的面積為
 

解決問題:
(4)如圖4中,矩形ABCD中,AB=nBC(n為常數(shù),且n>0).E是AB邊上的一個(gè)動(dòng)點(diǎn),F(xiàn)是BC邊上的一個(gè)動(dòng)點(diǎn).若在兩點(diǎn)運(yùn)動(dòng)的過程中,四邊形BEDF的面積始終等于矩形面積的
1
2
,請(qǐng)?zhí)骄烤段AE、BF應(yīng)滿足怎樣的數(shù)量關(guān)系,并說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

操作探究:
我們知道一個(gè)三角形中有三條高線和三條中線.如圖1,AD和AE分別是△ABC中BC邊上的高線和中線,我們規(guī)定:kA=
DE
BE
,另外,對(duì)kB、kC作類似的規(guī)定.
(1)如圖2,在△ABC中,∠C=90°,∠A=30°,則kA的值為
1
1
,kC的值為
1
2
1
2
;
(2)在每個(gè)小正方形邊長(zhǎng)均為1的4×4的方格紙上(如圖3),畫一個(gè)△ABC,使其頂點(diǎn)在格點(diǎn)(格點(diǎn)即每個(gè)小正方形的頂點(diǎn))上,且kA=2,面積也為2;
(3)判斷下面三個(gè)命題的真假(真命題打“√”,假命題的打“×”)
①若△ABC中,kA<1,則△ABC為銳角三角形
×
×
;
②若△ABC中,kA=1,則△ABC為直角三角形
;
③若△ABC中,kA>1,則△ABC為鈍角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

如圖4,在ABC中,邊BC12cm,高AD6cm,邊長(zhǎng)為x的正方形PQMN的一邊

BC上,其余兩個(gè)頂點(diǎn)分別在AB、AC上,則邊長(zhǎng)x(   )

A. 3cm      B. 4cm       C. 5cm       D. 6cm

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

如圖4,在△ABC中,邊BC12cm,高AD6cm,邊長(zhǎng)為x的正方形PQMN的一邊

BC上,其余兩個(gè)頂點(diǎn)分別在AB、AC上,則邊長(zhǎng)x(   )

A. 3cm    B. 4cm    C. 5cm   D. 6cm

 

查看答案和解析>>

同步練習(xí)冊(cè)答案