【題目】中國“蛟龍” 號深潛器目前最大深潛極限為7062.68米.如圖,某天該深潛器在海面下2000米的A點處作業(yè)測得俯角為30°正前方的海底有黑匣子C信號發(fā)出,該深潛器受外力作用可繼續(xù)在同一深度直線航行3000米后再次在B點處測得俯角為45°正前方的海底有黑匣子C信號發(fā)出,請通過計算判斷“蛟龍”號能否在保證安全的情況下打撈海底黑匣子C.(參考數(shù)據≈1.732)

【答案】能.

【解析】

試題分析:過點C作CDAB交AB延長線于E,設CE=x,在RtBCE和RtACE中分別用x表示AE和BE的長度,然后根據AB+BE=AE,列出方程求出x的值,繼而可判斷“蛟龍”號能在保證安全的情況下打撈海底黑匣子C.

如圖,過點C作CDAB交AB延長線于E.

設CE=x,

依題意得:3000+x= x,

解之得:x=15000( +1)≈4098.

顯然2000+4098<7062.68

所以“蛟龍”號能在保證安全的情況下打撈海底黑匣子.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上有A、B兩點,所表示的數(shù)分別為aa+4,A點以每秒3個單位長度的速度向正方向運動,同時B點以每秒1個單位長度的速度也向正方向運動,設運動時間為t.

(1)運動前線段AB的長為 ,t秒后,A點運動的距離可表示為 , B點運動距離可表示為

(2)t為何值時,A、B兩點重合,并求出此時A點所表示的數(shù)(用含有a的式子表示);

(3)在上述運動的過程中,P為線段AB的中點,O為數(shù)軸的原點,a=-8,是否存在這樣的值,使得線段PO=5,若存在,求出符合條件的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上有三點AB、C,若用AB表示A、B兩點的距離,AC表示A、C兩點的距離,且ABAC,點A、點C對應的數(shù)是分別是a、c,且|a+40|+|c20|0

1)求BC的長.

2)若點P、Q分別從A、C兩點同時出發(fā)向左運動,速度分別為2個單位長度每秒、5個單位長度每秒,則運動了多少秒時,QB的距離與PB的距離相等?

3)若點P、Q仍然以(2)中的速度分別從AC兩點同時出發(fā)向左運動,2秒后,動點RA點出發(fā)向右運動,點R的速度為1個單位長度每秒,點M為線段PR的中點,點N為線段RQ的中點,點R運動了多少秒時恰好滿足MN+AQ31;并求出此時R點所對應的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A3,0),B1,0)兩點,與y軸交于點C

1)求該二次函數(shù)的解析式;

2)設該拋物線的頂點為D,求ACD的面積;

3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當P,Q運動到t秒時,APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,那么可以轉換為該生所在班級序號,其序號為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為,表示該生為5班學生.表示6班學生的識別圖案是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】暖羊羊有5張寫著不同數(shù)字的卡片,請你按要求選擇卡片,完成下列各問題:

1)從中選擇兩張卡片,使這兩張卡片上數(shù)字的乘積最大.

這兩張卡片上的數(shù)字分別是 ,積為 _

2)從中選擇兩張卡片,使這兩張卡片上數(shù)字相除的商最。

這兩張卡片上的數(shù)字分別是 ,商為

3)從中選擇4張卡片,每張卡片上的數(shù)字只能用一次,選擇加、減、乘、除中的適當方法(可加括號),使其運算結果為24,寫出運算式子.(寫出一種即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DE是⊙O的直徑過點D⊙O的切線AD,CAD的中點,AE⊙O于點B.

(1)求證:BC⊙O的切線;

(2)⊙O半徑為1,BC=,AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的運算程序中,若開始輸入的值為5,可發(fā)現(xiàn)第一次輸出的結果為8,第二次輸出的結果為4,請你探索第2020次輸出的結果為(

A.2B.1C.6D.4

查看答案和解析>>

同步練習冊答案