【題目】如圖,直線與反比例函數(shù)的圖象相交于、兩點,過、兩點分別作軸的垂線,垂足分別為點、,連接、,則四邊形的面積為( )
A.4B.8C.12D.24
【答案】C
【解析】
根據(jù)反比例函數(shù)圖象上的點與原點所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|,得出S△AOC=S△ODB=3,再根據(jù)反比例函數(shù)的對稱性可知:OC=OD,AC=BD,即可求出四邊形ACBD的面積.
解:∵過函數(shù)的圖象上A,B兩點分別作y軸的垂線,垂足分別為點C,D,
∴S△AOC=S△ODB=|k|=3,
又∵OC=OD,AC=BD,
∴S△AOC=S△ODA=S△ODB=S△OBC=3,
∴四邊形ABCD的面積為=S△AOC+S△ODA+S△ODB+S△OBC=4×3=12.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線交軸于點,交軸于點,,點的坐標(biāo)是.
(1)如圖1,求直線的解析式;
(2)如圖2,點在第一象限內(nèi),連接,過點作交延長線于點,且,過點作軸于點,連接,設(shè)點的橫坐標(biāo)為,的而積為S,求S與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(3)如圖3,在(2)的條件下,過點作軸,連接、,若,時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(a,0),B(0,b),且a,b滿足a2-2ab+b2+(b-4)2=0,點C為線段AB上一點,連接OC.
(1)直接寫出a=____,b=_____;
(2)如圖1,P為OC上一點,連接PA,PB.若PA=B0,∠BPC=30°.求點P的縱坐標(biāo);
(3)如圖2,在(2)的條件下,點M是AB上一動點,以OM為邊在OM的右側(cè)作等邊△OMN,連接CN.若OC=t,求ON+CN的最小值(結(jié)果用含t的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】收發(fā)微信紅包已成為各類人群進(jìn)行交流聯(lián)系,增強感情的一部分,下面是甜甜和她的雙胞胎妹妹在六一兒童節(jié)期間的對話.
請問:(1)2015年到2017年甜甜和她妹妹在六一收到紅包的年增長率是多少?
(2)2017年六一甜甜和她妹妹各收到了多少錢的微信紅包?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已如如圖1,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(6,0)、點B的坐標(biāo)為(0,8),點C在y軸上,作直線AC.點B關(guān)于直線AC的對稱點B′剛好在x軸上,連接CB′.
(1)寫出點B′的坐標(biāo),并求出直線AC對應(yīng)的函數(shù)表達(dá)式;
(2)點D在線段AC上,連接DB、DB′、BB′,當(dāng)△DBB′是等腰直角三角形時,求點D坐標(biāo);
(3)如圖2,在(2)的條件下,點P從點B出發(fā)以每秒2個單位長度的速度向原點O運動,到達(dá)點O時停止運動,連接PD,過D作DP的垂線,交x軸于點Q,問點P運動幾秒時△ADQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、兩點的坐標(biāo)分別為,,直線與反比例函數(shù)的圖象相交于點和點.
(1)求直線與反比例函數(shù)的解析式;
(2)求的度數(shù);
(3)將繞點順時針方向旋轉(zhuǎn)角(為銳角),得到,當(dāng)為多少度時,并求此時線段的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為獎勵在學(xué)校體育藝術(shù)節(jié)中表現(xiàn)突出的25名同學(xué),派李老師為這些同學(xué)購買獎品,要求每人一件.李老師到文具店看了商品后,決定獎品在鋼筆和筆記本中選擇.如果買4個筆記本和2支鋼筆,則需86元;如果買3個筆記本和1支鋼筆,則需57元.
(1)求筆記本和鋼筆的單價分別為多少元?
(2)售貨員提示,購買筆記本沒有優(yōu)惠;買鋼筆有優(yōu)惠,具體方法是:如果買鋼筆超過10支,那么超出部分可以享受8折優(yōu)惠,若買x(x>10)支鋼筆,所需總費用為y元,請你求出y與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,如果買同一種獎品,請你幫忙計算說明,買哪種獎品費用更低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,已知拋物線與軸交于、兩點,與軸交于點,頂點坐標(biāo)為點.
(1)求此拋物線的解析式;
(2)點為拋物線對稱軸上一點,當(dāng)最小時,求點坐標(biāo);
(3)在第一象限的拋物線上有一點,當(dāng)面積最大時,求點坐標(biāo);
(4)在軸下方拋物線上有一點,面積為6,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點為平行四邊形的邊上一動點,過點作直線垂直于,且直線與平行四邊形的另一邊交于點.當(dāng)點從勻速運動時,設(shè)點的運動時間為,的面積為,能大致反映與函數(shù)關(guān)系的圖象是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com