【題目】四邊形ABCD中,E是AB邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接DE,過點(diǎn)E作EP⊥DE.
(1)如圖1,當(dāng)四邊形ABCD是正方形時(shí),點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)為點(diǎn)F,連接EF并延長交BC于點(diǎn)G;射線DG交EP于點(diǎn)H,連接BH.
①求證:GF=GC
②請(qǐng)求出的值;
(2)如圖2,四邊形ABCD是矩形,且AD=kAB,點(diǎn)H是射線EP上的一點(diǎn),連接BH,當(dāng)DE=kEH時(shí),請(qǐng)直接寫出的值.
【答案】(1)①詳見解析;②;(2).
【解析】
(1)①如圖1,連接DF,根據(jù)對(duì)稱得:△ADE≌△FDE,再由HL證明Rt△DFG≌Rt△DCG,即可得出結(jié)論;
②如圖2,作輔助線,構(gòu)建AM=AE,先證明∠EDG=45°,得DE=EH,證明△DME≌△EBH,則EM=BH,根據(jù)等腰直角的性質(zhì)得:EM= AE,即可得出結(jié)論;
(2)先構(gòu)建AM=kAE,進(jìn)而得出 =k,即可得出,進(jìn)而判斷出△MDE∽△BEH,得出 =k,再判斷出ME= AE,即可得出結(jié)論.
證明:(1)①如圖1,連接DF,
∵四邊形ABCD是正方形,
∴DA=DC,∠A=∠C=90°,
∵點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)為F,
∴△ADE≌△FDE,
∴DA=DF=DC,∠DFE=∠A=90°,
∴∠DFG=90°,
在Rt△DFG和Rt△DCG中,
∵ ,
∴Rt△DFG≌Rt△DCG(HL),
∴GF=GC;
②如圖2,在線段AD上截取AM,使AM=AE,
∵AD=AB,
∴DM=BE,
由①知:∠1=∠2,∠3=∠4,
∵∠ADC=90°,
∴∠1+∠2+∠3+∠4=90°,
∴2∠2+2∠3=90°,
∴∠2+∠3=45°,
即∠EDG=45°,
∵EH⊥DE,
∴∠DEH=90°,△DEH是等腰直角三角形,
∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,
∴∠1=∠BEH,
在△DME和△EBH中,
∵ ,
∴△DME≌△EBH(SAS),
∴EM=BH,
Rt△AEM中,∠A=90°,AM=AE,
∴EM=AE,
∴BH=AE,
∴=;
(2)如圖3,
在AD上截取AM,使AM=kAE,
∵AD=kAB,
∴DM=AD﹣AM=kAB﹣kAE=k(AB﹣AE)=kBE,
∴=k
∵DE=kEH,
∴=k,
∴,
同①的方法得,∠MDE=∠BEH,
∴△MDE∽△BEH,
∴ =k,
在Rt△EAM中,ME=,
∴,
∴=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】速滑運(yùn)動(dòng)受到許多年輕人的喜愛。如圖,四邊形是某速滑場館建造的滑臺(tái),已知,滑臺(tái)的高為米,且坡面的坡度為.后來為了提高安全性,決定降低坡度,改造后的新坡面AC的坡度為.
(1)求新坡面的坡角及的長;
(2)原坡面底部的正前方米處是護(hù)墻,為保證安全,體育管理部門規(guī)定,坡面底部至少距護(hù)墻米。請(qǐng)問新的設(shè)計(jì)方案能否通過,試說明理由(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | ||||
乙 |
(1)寫出表格中的值:
(2)分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡要分析這兩名隊(duì)員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在7×7正方形網(wǎng)格中的每個(gè)小正方形邊長都為1個(gè)單位長度,我們把每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),點(diǎn)A、B、C都為格點(diǎn),且點(diǎn)A(1,2),請(qǐng)分別僅用一把無刻度的直尺畫圖;
(1)過點(diǎn)C畫一條線段AB的平行線段CD,直接寫出格點(diǎn)D的坐標(biāo);
(2)過點(diǎn)C畫一條線段AB的垂直線段CE,直接寫出格點(diǎn)E的坐標(biāo);
(3)作∠DCE的角平分線CF,直接寫出格點(diǎn)F的坐標(biāo);
(4)作∠ABM,使∠ABM=45°,直接寫出格點(diǎn)M的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長均為 1.格點(diǎn)三角形 ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn) A、C 的坐標(biāo)分別是(﹣2,0),(﹣3,3).
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系,寫出點(diǎn) B 的坐標(biāo);
(2)把△ABC 繞坐標(biāo)原點(diǎn) O 順時(shí)針旋轉(zhuǎn) 90°得到△A1B1C1,畫出△A1B1C1,寫出點(diǎn)
B1的坐標(biāo);
(3)以坐標(biāo)原點(diǎn) O 為位似中心,相似比為 2,把△A1B1C1 放大為原來的 2 倍,得到△A2B2C2 畫出△A2B2C2,使它與△AB1C1 在位似中心的同側(cè);
請(qǐng)?jiān)?x 軸上求作一點(diǎn) P,使△PBB1 的周長最小,并寫出點(diǎn) P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】判斷關(guān)于x的方程mx2+(2m﹣1)x+m+3=0的根的情況,并直接寫出關(guān)于x的方程mx2+(2m﹣1)x+m+3=0的根及相應(yīng)的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,平分,且交于點(diǎn),平分,且交于點(diǎn),與相交于點(diǎn),連接
求的度數(shù);
求證:四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,下列四個(gè)判斷中不正確的是( )
A.四邊形AEDF是平行四邊形
B.若∠BAC=90°,則四邊形AEDF是矩形
C.若AD平分∠BAC,則四邊形AEDF是矩形
D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com