【題目】小敏從A地出發(fā)向B地行走,同時(shí)小聰從B地出發(fā)向A地行走,如圖所示,相交于點(diǎn)P的兩條線段、分別表示小敏、小聰離B地的距離與已用時(shí)間之間的關(guān)系,則小敏、小聰行走的速度分別是
A. 和 B. 和
C. 和 D. 和
【答案】D
【解析】設(shè)小敏的速度為:m,則函數(shù)式為,y=mx+b,
由已知小敏經(jīng)過兩點(diǎn)(1.6,4.8)和(2.8,0),
所以得:4.8=1.6m+b,0=2.8m+b,
解得:m=-4,b=11.2,
小敏離B地的距離y(km)與已用時(shí)間x(h)之間的關(guān)系為:y=-4x+11.2;
由實(shí)際問題得小敏的速度為4km/h;
設(shè)小聰?shù)乃俣葹椋簄,則函數(shù)圖象過原點(diǎn)則函數(shù)式為,y=nx,
由已知經(jīng)過點(diǎn)(1.6,4.8),
所以得:4.8=1.6n,
則n=3,
即小聰?shù)乃俣葹?km/h,
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中, , 為線段上一點(diǎn), , 為射線上一點(diǎn),且,連接.
()如圖,
①依題意補(bǔ)全圖形.
②若, ,求的長.
()如圖,若,連接并延長,交于點(diǎn),求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,AD是的中線,過點(diǎn)A作與AB的平行線DE交于點(diǎn)與AC相交于點(diǎn)O,連接EC.
求證: ;
當(dāng)滿足條件______時(shí),四邊形ADCE是菱形,請補(bǔ)充條件并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)規(guī)劃在一個(gè)長30m、寬20m的長方形土地ABCD上修建三條同樣寬的通道,使其中兩條與AB平行,另一條與AD平行,其余部分鐘花草,要使每一塊花草的面積都為78cm2 , 那么通道寬應(yīng)設(shè)計(jì)成多少m?設(shè)通道寬為xm,則由題意列得方程為( )
A.(30﹣x)(20﹣x)=78
B.(30﹣2x)(20﹣2x)=78
C.(30﹣2x)(20﹣x)=6×78
D.(30﹣2x)(20﹣2x)=6×78
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保護(hù)環(huán)境,我市公交公司計(jì)劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計(jì)在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?
(3)在(2)的條件下,哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,在直角坐標(biāo)系xOy中,A(﹣1,0),B(3,0),將A,B同時(shí)分別向上平移2個(gè)單位,再向右平移1個(gè)單位,得到的對應(yīng)點(diǎn)分別為D,C,連接AD,BC.
(1)直接寫出點(diǎn)C,D的坐標(biāo):C ,D ;
(2)四邊形ABCD的面積為 ;
(3)點(diǎn)P為線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)),連接PD,PO.求證:∠CDP+∠BOP=∠OPD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(﹣3,2).
(1)直接寫出點(diǎn)E的坐標(biāo) ;
(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動(dòng).若點(diǎn)P的速度為每秒1個(gè)單位長度,運(yùn)動(dòng)時(shí)間為t秒,回答下列問題:
①當(dāng)t= 秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
②求點(diǎn)P在運(yùn)動(dòng)過程中的坐標(biāo),(用含t的式子表示,寫出過程);
③當(dāng)3秒<t<5秒時(shí),設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,試問 x,y,z之間的數(shù)量關(guān)系能否確定?若能,請用含x,y的式子表示z,寫出過程;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC邊的垂直平分線交AC邊于點(diǎn)D,連接BD.
(1)如圖CE=4,△BDC的周長為18,求BD的長.
(2)求∠ADM=60°,∠ABD=20°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=-x2+x- ,當(dāng)自變量x取m時(shí)對應(yīng)的值大于0,當(dāng)自變量x分別取m-1、m+1時(shí)對應(yīng)的函數(shù)值為y1、y2 , 則y1、y2必須滿足( 。
A.y1>0、y2>0
B.y1<0、y2<0
C.y1<0、y2>0
D.y1>0、y2<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com