【題目】用配方法解一元二次方程x2﹣2x﹣5=0,下列配方正確的是( )
A.(x+1)2=6
B.(x+1)2=9
C.(x﹣1)2=6
D.(x﹣1)2=9

【答案】C
【解析】解:x2﹣2x=5,
x2﹣2x+1=5+1,即(x﹣1)2=6,
故選:C.
【考點精析】本題主要考查了配方法的相關(guān)知識點,需要掌握左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知數(shù)軸上有三點A、B、C,AB=60,點A對應(yīng)的數(shù)是40.
(1)若BC:AC=4:7,求點C到原點的距離;
(2)如圖2,在(1)的條件下,動點P、Q兩點同時從C、A出發(fā)向右運動,同時動點R從點A向左運動,已知點P的速度是點R的速度的3倍,點Q的速度是點R的速度2倍少5個單位長度/秒.經(jīng)過5秒,點P、Q之間的距離與點Q、R之間的距離相等,求動點Q的速度;
(3)如圖3,在(1)的條件下,O表示原點,動點P、T分別從C、O兩點同時出發(fā)向左運動,同時動點R從點A出發(fā)向右運動,點P、T、R的速度分別為5個單位長度/秒、1個單位長度/秒、2個單位長度/秒,在運動過程中,如果點M為線段PT的中點,點N為線段OR的中點.請問PT﹣MN的值是否會發(fā)生變化?若不變,請求出相應(yīng)的數(shù)值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)直角三角形的判定的知識解決下列問題
(1)如圖①所示,P是等邊△ABC內(nèi)的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉(zhuǎn)60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;

(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內(nèi)的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉(zhuǎn)90°得△BCQ,連接PQ.當(dāng)PA、PB、PC滿足什么條件時,∠PQC=90°?請說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對某班40同學(xué)的一次數(shù)學(xué)成績進(jìn)行統(tǒng)計,適當(dāng)分組后80~90分這個分?jǐn)?shù)段的劃記人數(shù)為“”,那么此班在這個分?jǐn)?shù)段的人數(shù)占全班人數(shù)的百分比是(  )
A.20%
B.40%
C.8%
D.25%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正多邊形的一個內(nèi)角為135°,則該多邊形的邊數(shù)為

A. 9 B. 8 C. 7 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各統(tǒng)計量中,表示一組數(shù)據(jù)離散程度的量是( )

A.平均數(shù)B.方差C.眾數(shù)D.中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)學(xué)活動課中,小敏為了測量校園內(nèi)旗桿CD的高度,先在教學(xué)樓的底端A點處,觀測到旗桿頂端C的仰角CAD=60°,然后爬到教學(xué)樓上的B處,觀測到旗桿底端D的俯角是30°,已知教學(xué)樓AB高4米.

(1)求教學(xué)樓與旗桿的水平距離AD;(結(jié)果保留根號)

(2)求旗桿CD的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將直角三角形ABC沿AB方向平移AD距離得到直角三角形DEF.已知BE=4cm,EF=7cm,CG=3cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣2x2﹣3與y軸交點的縱坐標(biāo)為(
A.﹣3
B.﹣4
C.﹣5
D.﹣1

查看答案和解析>>

同步練習(xí)冊答案