【題目】(1)問題發(fā)現(xiàn)
在△ABC中,AC=BC,∠ACB=α,點(diǎn)D為直線BC上一動點(diǎn),過點(diǎn)D作DF∥AC交AB于點(diǎn)F,將AD繞點(diǎn)D順時針旋轉(zhuǎn)α得到ED,連接BE.
如圖(1),當(dāng)α=90°時,試猜想:
①AF與BE的數(shù)量關(guān)系是 ;②∠ABE= ;
(2)拓展探究
如圖(2),當(dāng)0°<α<90°時,請判斷AF與BE的數(shù)量關(guān)系及∠ABE的度數(shù),并說明理由.
(3)解決問題
如圖(3),在△ABC中,AC=BC,AB=8,∠ACB=α,點(diǎn)D在射線BC上,將AD繞點(diǎn)D順時針旋轉(zhuǎn)α得到ED,連接BE,當(dāng)BD=3CD時,請直接寫出BE的長度.
【答案】(1)①AF=BF ②90°;(2)AF=BE,∠ABE=α,理由見解析;(3)2或4
【解析】
(1)①由“SAS”△ADF≌△EDB,可得AF=BE,②根據(jù)三角形全等可得∠DAF=∠E,又因?yàn)椤?/span>AOD=∠EOB,即可求得∠ABE=∠ADO=90°;
(2)結(jié)論:AF=BF,∠ABE=a.由“SAS”證△ADF≌△EDB,即可解決問題;
(3)分當(dāng)點(diǎn)D在線段BC上和當(dāng)點(diǎn)D在BC的延長線上兩種情形討論,利用平行線分線段成比例可求解.
(1)①設(shè)AB交DE于O.
∵∠ACB=90°,AC=BC,
∴∠ABC=45°,
∵DF∥AC,
∴∠FDB=∠C=90°,
∴∠DFB=∠DBF=45°,
∴DF=DB,
∵∠ADE=∠FDB=90°,
∴∠ADE-∠FDE=∠FDB-∠FDE
∴∠ADF=∠EDB,
∵DA=DE,
∴△ADF≌△EDB,
∴AF=BE,
②由①得:△ADF≌△EDB,
∴∠DAF=∠E,
又∵∠AOD=∠EOB,
∴∠ABE=∠ADO=90°.
故答案為:AF=BF,90°.
(2)結(jié)論:AF=BE,∠ABE=α.理由如下:
∵DF∥AC,
∴∠ACB=∠FDB=∠ADE=α,∠CAB=∠DFB,
∵AC=BC,
∴∠ABC=∠CAB,
∴∠ABC=∠DFB,
∴DB=DF,
∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,
∴∠ADF=∠EDB,
又∵AD=DE,
∴△ADF≌△EDB,
∴AF=BE,∠AFD=∠EBD
∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,
∴∠ABE=∠FDB=α.
(3)①如圖3﹣1中,當(dāng)點(diǎn)D在BC上時,
∵BD=3CD
∴
∵DF∥AC,
∴=,
∵AB=8,
∴AF=2,
由(2)可知:BE=AF,
∴BE=AF=2,
②如圖3﹣2中,當(dāng)點(diǎn)D在BC的延長線上時,
∵BD=3CD
∴
∵AC∥DF,
∴=,
∵AB=8,
∴AF=4,
∴BE=AF=4
故BE的長度為2或4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知二次函數(shù)經(jīng)過點(diǎn)B(3,0),C(0,3),D(4,-5)
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)若P是拋物線上一點(diǎn),且S△ABP=S△ABC,這樣的點(diǎn)P有幾個請直接寫出它們的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)E是的中點(diǎn),連接AF交過E的切線于點(diǎn)D,AB的延長線交該切線于點(diǎn)C,若∠C=30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】振華書店準(zhǔn)備購進(jìn)甲、乙兩種圖書進(jìn)行銷售,若購進(jìn)本甲種圖書和本乙種圖書共需元,若購進(jìn)本甲種圖書和本乙種圖書共需元.
求甲、乙兩種圖書每本進(jìn)價(jià)各多少元;
該書店購進(jìn)甲、乙兩種圖書共本進(jìn)行銷售,且每本甲種圖書的售價(jià)為元,每本乙種圖書的售價(jià)為元,如果使本次購進(jìn)圖書全部售出后所得利潤不低于元,那么該書店至少需要購進(jìn)乙種圖書多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司的午餐采用自助的形式,并倡導(dǎo)員工“適度取餐,減少浪費(fèi)”該公司共有10個部門,且各部門的人數(shù)相同.為了解午餐的浪費(fèi)情況,從這10個部門中隨機(jī)抽取了兩個部門,進(jìn)行了連續(xù)四周(20個工作日)的調(diào)查,得到這兩個部門每天午餐浪費(fèi)飯菜的重量,以下簡稱“每日餐余重量”(單位:千克),并對這些數(shù)據(jù)進(jìn)行了整理、描述和分析.下面給出了部分信息..部門每日餐余重量的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,):
.部門每日餐余重量在這一組的是:6.1 6.6 7.0 7.0 7.0 7.8
.部門每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8
. 兩個部門這20個工作日每日餐余重量的平均數(shù)、中位數(shù)、眾數(shù)如下:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
| 6.4 |
| 7.0 |
/p> | 6.6 | 7.2 |
|
根據(jù)以上信息,回答下列問題:
(1)寫出表中的值;
(2)在這兩個部門中,“適度取餐,減少浪費(fèi)”做得較好的部門是________(填“”或“”),理由是____________;
(3)結(jié)合這兩個部門每日餐余重量的數(shù)據(jù),估計(jì)該公司(10個部門)一年(按240個工作日計(jì)算)的餐余總重量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的邊長是4,∠DAB=60,點(diǎn)M,N分別在邊AD,AB上,MN⊥AC,垂足為P,把△AMN沿MN折疊得到△A'MN,若△A'DC恰為等腰三角形,則AP的長為_____。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)A(1,3)、B(3,m).
(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5交y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過點(diǎn)A作AD∥x軸交拋物線于點(diǎn)D.
(1)求此拋物線的表達(dá)式;
(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對稱點(diǎn)在直線AD上,求△EAD的面積;
(3)若點(diǎn)P是直線AB下方的拋物線上一動點(diǎn),當(dāng)點(diǎn)P運(yùn)動到某一位置時,△ABP的面積最大,求出此時點(diǎn)P的坐標(biāo)和△ABP的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點(diǎn)E,點(diǎn)F在邊AB上,連接CF交線段BE于點(diǎn)G,CG2=GEGD.
(1)求證:∠ACF=∠ABD;
(2)連接EF,求證:EFCG=EGCB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com