【題目】振華書店準(zhǔn)備購進(jìn)甲、乙兩種圖書進(jìn)行銷售,若購進(jìn)本甲種圖書和本乙種圖書共需元,若購進(jìn)本甲種圖書和本乙種圖書共需元.
求甲、乙兩種圖書每本進(jìn)價各多少元;
該書店購進(jìn)甲、乙兩種圖書共本進(jìn)行銷售,且每本甲種圖書的售價為元,每本乙種圖書的售價為元,如果使本次購進(jìn)圖書全部售出后所得利潤不低于元,那么該書店至少需要購進(jìn)乙種圖書多少本?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在正方形ABCD中,E,F,G,H分別是AD,DC,BC,CD上的點,連接EF,GH.
①若EF⊥GH,則必有EF=GH.
②若EF=GH,則必有EF⊥GH.
判斷上述兩個命題是否成立,若成立,請說明理由;若不成立,請舉出反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點A、B在雙曲線y= (x>0)上,BC與x軸交于點D.若點A的坐標(biāo)為(1,2),則點B的坐標(biāo)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.
(1)怎樣圍才能使矩形場地的面積為750m2?
(2)能否使所圍矩形場地的面積為810m2 ,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線∥AB,與 AB 之間的距離為 2 ,C、D 是直線上兩個動點(點 C在 D 點的左側(cè)),且 AB=CD=5.連接 AC、BC、BD,將△ABC 沿 BC 折疊得到△A′BC.若以 A′、C、B、D 為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點O連續(xù)旋轉(zhuǎn)2019次得到正方形OA2019B2019C2019,如果點A的坐標(biāo)為(1,0),那么點B2019的坐標(biāo)為( )
A.(1,1)B.(0,)C.(-,0)D.(-1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
在△ABC中,AC=BC,∠ACB=α,點D為直線BC上一動點,過點D作DF∥AC交AB于點F,將AD繞點D順時針旋轉(zhuǎn)α得到ED,連接BE.
如圖(1),當(dāng)α=90°時,試猜想:
①AF與BE的數(shù)量關(guān)系是 ;②∠ABE= ;
(2)拓展探究
如圖(2),當(dāng)0°<α<90°時,請判斷AF與BE的數(shù)量關(guān)系及∠ABE的度數(shù),并說明理由.
(3)解決問題
如圖(3),在△ABC中,AC=BC,AB=8,∠ACB=α,點D在射線BC上,將AD繞點D順時針旋轉(zhuǎn)α得到ED,連接BE,當(dāng)BD=3CD時,請直接寫出BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象與一次函數(shù)y=k(x-2)的圖象交點為A(3,2),B(x,y).
(1)求反比例函數(shù)與一次函數(shù)的解析式及B點坐標(biāo);
(2)若C是y軸上的點,且滿足△ABC的面積為10,求C點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 問題:如圖1,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,AC=,BC=2,求CD的長.
(1)發(fā)現(xiàn):張強同學(xué)解決這個問題的思路是:將△BCD繞點D逆時針旋轉(zhuǎn)90°到△AED處,點B,C分別落在點A,E處(如圖2),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得到了AC,BC,CD三條線段之間的關(guān)系為:AC+BC=CD,從而求出CD的長是______ ;
(2)應(yīng)用:如圖3,AB是⊙O的直徑,點C,D在⊙O上,且,若AB=5,BC=4,求CD的長;
(3)拓展:如圖4,∠ACB=90°,AC=BC=2,點P為AB的中點,若點E滿足CE=CA,點Q為AE的中點,直接寫出線段PQ的長是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com