【題目】如圖,在直角坐標系中,矩形OABC的頂點A、B在雙曲線y= (x>0)上,BC與x軸交于點D.若點A的坐標為(1,2),則點B的坐標為_________.
【答案】B(4,).
【解析】
試題由矩形OABC的頂點A、B在雙曲線y=(x>0)上,BC與x軸交于點D.若點A的坐標為(1,2),利用待定系數(shù)法即可求得反比例函數(shù)與直線OA的解析式,又由OA⊥AB,可得直線AB的系數(shù),繼而可求得直線AB的解析式,將直線AB與反比例函數(shù)聯(lián)立,即可求得點B的坐標.
試題解析:∵矩形OABC的頂點A、B在雙曲線y=(x>0)上,點A的坐標為(1,2),
∴2=,
解得:k=2,
∴雙曲線的解析式為:y=,直線OA的解析式為:y=2x,
∵OA⊥AB,
∴設直線AB的解析式為:y=-x+b,
∴2=-×1+b,
解得:b=,
∴直線AB的解析式為:y=-x+,
將直線AB與反比例函數(shù)聯(lián)立得出:
,
解得:或
∴點B(4,).
考點: 反比例函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程
(1)求證:方程總有兩個不相等的實數(shù)根。
(2)m為何整數(shù)時,此方程的兩個根都是正整數(shù)?
(3)若△ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根,第三邊BC的長為5,當△ABC是等腰三角形時,求m的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知二次函數(shù)經(jīng)過點B(3,0),C(0,3),D(4,-5)
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)若P是拋物線上一點,且S△ABP=S△ABC,這樣的點P有幾個請直接寫出它們的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為測量一座山峰CF的高度,將此山的某側山坡劃分為AB和BC兩段,每段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,坡角∠CBE=45°,則山峰的高度為( )米.
A.500B.400+100C.D.541
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是正方形ABCD邊AB上一點(不與點A,B重合),連接PD并將線段PD繞點P順時針方向旋轉90°得到線段PE,PE交邊BC于點F,連接BE,DF.
(1)求證:∠ADP=∠EPB;
(2)求∠CBE的度數(shù);
(3)當△PFD∽△BFP時,求tan∠FPB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2)、B(0,4) 、C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若A的對應點A2的坐標為(0,4) ,畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2,請直接寫出旋轉中心的坐標;
(3)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點E是的中點,連接AF交過E的切線于點D,AB的延長線交該切線于點C,若∠C=30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】振華書店準備購進甲、乙兩種圖書進行銷售,若購進本甲種圖書和本乙種圖書共需元,若購進本甲種圖書和本乙種圖書共需元.
求甲、乙兩種圖書每本進價各多少元;
該書店購進甲、乙兩種圖書共本進行銷售,且每本甲種圖書的售價為元,每本乙種圖書的售價為元,如果使本次購進圖書全部售出后所得利潤不低于元,那么該書店至少需要購進乙種圖書多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx﹣5交y軸于點A,交x軸于點B(﹣5,0)和點C(1,0),過點A作AD∥x軸交拋物線于點D.
(1)求此拋物線的表達式;
(2)點E是拋物線上一點,且點E關于x軸的對稱點在直線AD上,求△EAD的面積;
(3)若點P是直線AB下方的拋物線上一動點,當點P運動到某一位置時,△ABP的面積最大,求出此時點P的坐標和△ABP的最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com