【題目】甲、乙兩人進(jìn)行比賽的路程與時(shí)間的關(guān)系如圖所示.

(1)這是一場________米比賽;

(2)前一半賽程內(nèi)________的速度較快,最終________贏得了比賽;

(3)兩人第________秒在途中相遇,相遇時(shí)距終點(diǎn)________米;

(4)甲在前8秒的平均速度是多少?甲在整個(gè)賽程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整個(gè)賽程的平均速度是多少?

【答案】(1)100;(2)乙;甲;(3)8;25;(4)甲在前8秒的平均速度是(/),甲在整個(gè)賽程的平均速度是10(/),乙在前8秒的平均速度是(/),乙在整個(gè)賽程的平均速度是(/)

【解析】

(1)根據(jù)圖像直接解答;(2) 根據(jù)圖像直接解答;(3) 根據(jù)圖像直接解答;(4)根據(jù)路程與時(shí)間的關(guān)系圖作答.

(1)100;(2)乙;甲;(3)8;25

(4)甲在前8秒的平均速度是75÷8= (米/秒),甲在整個(gè)賽程的平均速度是100÷10=10(米/秒),乙在前8秒的平均速度是75÷8= (米/秒),乙在整個(gè)賽程的平均速度是100÷12= (米/秒).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題是( )

A. 如果三角形三個(gè)角的度數(shù)比是3:4:5,那么這個(gè)三角形是直角三角形

B. 如果直角三角形兩直角邊的長分別為ab,那么斜邊的長為a2+b2

C. 若三角形三邊長的比為1:2:3,則這個(gè)三角形是直角三角形

D. 如果直角三角形兩直角邊分別為ab,斜邊為c,那么斜邊上的高h的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點(diǎn)P從點(diǎn)B出發(fā),沿BC以2cm/s的速度向點(diǎn)C移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向點(diǎn)A移動(dòng),若點(diǎn)P、Q分別從點(diǎn)B、C同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t s,當(dāng)t=時(shí),△CPQ與△CBA相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四幅圖像分別表示變量之間的關(guān)系,請按圖像的順序,將下面的四種情境與之對應(yīng)排序.

a.運(yùn)動(dòng)員推出去的鉛球(鉛球的高度與時(shí)間的關(guān)系);

b.靜止的小車從光滑的斜面滑下(小車的速度與時(shí)間的關(guān)系);

c.一個(gè)彈簧由不掛重物到所掛重物的質(zhì)量逐漸增加(彈簧的長度與所掛重物的質(zhì)量的關(guān)系);

d.小明從A地到B地后,停留一段時(shí)間,然后按原來的速度原路返回(小明離A地的距離與時(shí)間的關(guān)系)

正確的順序是(  )

A. abcd B. abdc C. acbd D. acdb

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商場采購員要到廠家批發(fā)購進(jìn)籃球和排球共100個(gè),付款總額不得超過11815元.已知:廠家兩種球的批發(fā)價(jià)如()、商場在某兩天的零售信息如()

品名

廠家批發(fā)價(jià)(/個(gè))

籃球

130

排球

100

()

籃球(個(gè))

排球(個(gè))

零售總價(jià)()

第一天

8

5

1880

第二天

6

10

2160

()

請解決以下問題:

1)求出體育商場出售籃球和排球的零售單價(jià).

2)該采購員最多可從廠家購進(jìn)籃球多少個(gè).

3)若該商場把這100個(gè)球全部以零售價(jià)售出,為使商場的利潤不低于2580元,則采購員采購的方案有哪幾種?該商場最多可盈利__________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+c與直線y=﹣x+6分別交于x軸和y軸上同一點(diǎn),交點(diǎn)分別是點(diǎn)B和點(diǎn)C,且拋物線的對稱軸為直線x=4.

(1)求出拋物線與x軸的兩個(gè)交點(diǎn)A,B的坐標(biāo).
(2)試確定拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B(3,0),C(0,3)三點(diǎn).

(1)求此拋物線的解析式;
(2)若點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過M作NM∥y軸交拋物線于N,設(shè)點(diǎn)M的橫坐標(biāo)為m,請用含m的代數(shù)式表示MN的長;
(3)在(2)的條件下,連接NB,NC,是否存在點(diǎn)M,使△BNC的面積最大?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

1)請寫出△ABC各點(diǎn)的坐標(biāo).

2)求出△ABC的面積.

3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得到△ABC′,請?jiān)趫D中畫出△ABC′,并寫出點(diǎn)A′、B′、C′的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案