【題目】如圖,在菱形ABCD中,ABa,∠ABC60°,過點(diǎn)AAEBC,垂足為E,AFCD,垂足為F

1)連接EF,用等式表示線段EFEC的數(shù)量關(guān)系,并說明理由;

2)連接BF,過點(diǎn)AAKBF,垂足為K,求BK的長(用含a的代數(shù)式表示);

3)延長線段CBG,延長線段DCH,且BGCH,連接AG、GHAH

判斷△AGH的形狀,并說明理由;

a2,SADH3+),求sinGAB的值.

【答案】1EFEC;理由見解析;(2BK;(3AGH為等邊三角形;理由見解析;sinGAB

【解析】

(1)根據(jù)菱形的性質(zhì)得出線段和角度相等,進(jìn)而推出AEB≌△AFD,再通過條件證明AEF為等邊三角形,根據(jù)等邊三角形的性質(zhì)求出EF即可.

(2)利用三角函數(shù)解出BK即可.

(3)①根據(jù)題意畫出圖形,利用三角形全等證明兩邊相等一角為60°即可證明AGH為等邊三角形;②過點(diǎn)CCMAH于點(diǎn)M,通過△ADH的面積算出DH,從而求出CHHF,可證明△AFH是等腰直角三角形,再利用三角函數(shù)求出即可.

在菱形ABCD中,∠ABC60°,則△ABC、△ACD為兩個(gè)邊長為a的等邊三角形.

1)如圖1,∵ABAD,∠ABE=∠ADF,∠ADF=∠AEB90°,

∴△AEB≌△AFDAAS),

AEAF,

在等邊△ABC中,∵AEBC,

AE是∠BAC的角平分線,故∠BAE30°,

同理∠DAF30°,

∵∠ABC60°,則∠BAD120°,

∴∠EAF=∠BAD﹣∠BAE﹣∠DAF120°﹣30°﹣30°=60°,

∴△AEF為等邊三角形;

在等邊三角形ABC中,AEABsinABCaEFAF,BEECa

EFEC;

2)如圖1,∠BAF=∠BAD﹣∠FAD90°,

RtABF中,tanABF,則cosABF,

RtABK中,BKABcosABFa×a

3如圖2,連接AC,

BGCH,ABAC,

又∵∠ABG180°﹣∠ABC120°,∠ACH180°﹣ACD120°=∠ABG

∴△ABG≌△ACHSAS),

AGAH,∠GAB=∠HAC,

∴∠GAH=∠GAB+BAH=∠HAC+BAH=∠BAC60°,

∴△AGH為等邊三角形;

如圖2,過點(diǎn)CCMAH于點(diǎn)M,

SADHAF×DH××2×DH3+),

解得:DH,

CHDHCD,

HFDHFDAF,

∴△AFH為等腰直角三角形,則∠AHC45°,

RtCHM中,sinMHCsin45°=

CM,

RtACM中,sinHCMsinGAB,

sinGAB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn):

1)如圖1,在RtABC中,∠BAC=30°,∠ABC90°,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角α=2∠BAC, BCD的度數(shù)是  ;線段BDAC之間的數(shù)量關(guān)系是  

類比探究:

2)在RtABC中,∠BAC=45°,∠ABC90°,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角α=2∠BAC,請(qǐng)問(1)中的結(jié)論還成立嗎?;

拓展延伸:

3)如圖3,在RtABC中,AB2,AC4,∠BDC90°,若點(diǎn)P滿足PBPC,∠BPC90°,請(qǐng)直接寫出線段AP的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABCD的邊ABy軸上,點(diǎn)D4,4),cosBCD,若反比例函數(shù)yk≠0)的圖象經(jīng)過平行四邊形對(duì)角線的交點(diǎn)E,則k的值為(

A.14B.7C.8D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)道路交通法規(guī)規(guī)定:普通橋梁一般限速40km/h.為了安全,交通部門在橋頭豎立警示牌:“請(qǐng)勿超速”,并監(jiān)測(cè)攝像系統(tǒng)監(jiān)控,如圖,在某直線公路L路橋段BC內(nèi)限速40km/h,為了檢測(cè)車輛是否超速,在距離公路L500米旁的A處設(shè)立了觀測(cè)點(diǎn),從觀測(cè)點(diǎn)A測(cè)得一小車從點(diǎn)B到達(dá)點(diǎn)C行駛了30秒鐘,已知∠ABL=45°,∠ACL=30°,此車超速了嗎?請(qǐng)說明理由.(參考數(shù)據(jù):=1.41,=1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×5的網(wǎng)格中,橫、縱坐標(biāo)均為整點(diǎn)的數(shù)叫做格點(diǎn),例如(0,1)、B2,1)、C3,3)都是格點(diǎn),現(xiàn)僅用無刻度的直尺在網(wǎng)格中做如下操作:

1)直接寫出點(diǎn)A關(guān)于點(diǎn)B旋轉(zhuǎn)180°后對(duì)應(yīng)點(diǎn)M的坐標(biāo)   

2)畫出線段BE,使BEAC,其中E是格點(diǎn),并寫出點(diǎn)E的坐標(biāo)   ;

3)找格點(diǎn)F,使∠EAF=∠CAB,畫出∠EAF,并寫出點(diǎn)F的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC90°,ABBC,三角形的頂點(diǎn)在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為2,l2l3之間的距離為3,BCl2D點(diǎn).

1)求AB的長.

2)求sinBAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰直角△ABC,∠C=90°,AC=2D為邊AC上一動(dòng)點(diǎn),連結(jié)BD,在射線BD上取一點(diǎn)E使BEBD=AB2.若點(diǎn)DA運(yùn)動(dòng)到C,則點(diǎn)E運(yùn)動(dòng)的路徑長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn)

小明在學(xué)習(xí)魯教版八年級(jí)上冊(cè)97頁例4時(shí),受到啟發(fā)進(jìn)行如下數(shù)學(xué)實(shí)驗(yàn)操作:

如圖1,取一個(gè)銳角為45°的三角尺,把銳角頂點(diǎn)放在正方形ABCD的頂點(diǎn)D處,將三角尺繞點(diǎn)D旋轉(zhuǎn)一個(gè)角度,使三角尺的直角邊與斜邊分別交邊AB,BC于點(diǎn)E和點(diǎn)F,連接FE,在繞點(diǎn)D旋轉(zhuǎn)過程中,發(fā)現(xiàn)線段AE,EF,CF滿足EF=AE+CF的數(shù)量關(guān)系,但是不會(huì)進(jìn)行證明,數(shù)學(xué)張老師給他如下的提示:ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°DCE’的位置,小明畫旋轉(zhuǎn)后的圖形,利用全等的知識(shí)證明了出來.你根據(jù)上面的提示畫出旋轉(zhuǎn)后的圖形,并將上面的結(jié)論進(jìn)行證明.

問題探究

小明的探究引發(fā)了老師的興趣,老師將三角尺繞點(diǎn)D旋轉(zhuǎn)到如圖2的位置,三角尺的直角邊與斜邊分別交邊AB,BC的延長線于點(diǎn)E和點(diǎn)F,老師問題小明此時(shí)AE,EF,CF滿足什么數(shù)量關(guān)系,小明思考后說出了正確的結(jié)論.請(qǐng)同學(xué)們直接寫出正確結(jié)論(不用寫出證明過程).

拓展延伸

張老師讓小明利用上面探究積累的學(xué)習(xí)經(jīng)驗(yàn),解答下面的問題:

如圖3已知正方形ABCD,點(diǎn)E在邊AB,點(diǎn)F在邊BC,且∠EDF=45°,CD=6,AE=2,CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠ABC=90°,D是直線AB邊上的點(diǎn),AD=BC

1)如圖1,點(diǎn)D在線段AB上,過點(diǎn)AAFAB,且AF=BD,連接DC、DF、CF,試判斷△CDF的形狀并說明理由;

2)如圖2,點(diǎn)D在線段AB的延長線上,點(diǎn)F在點(diǎn)A的左側(cè),其他條件不變,以上結(jié)論是否仍然成立?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案