【題目】如圖,在Rt△ABC中,∠C=90°,AB=13,AC=12,經(jīng)過點C且與AB邊相切的動圓與BC、CA分別相交于點M、N,則線段MN長度的最小值為 .
【答案】
【解析】解:如圖,設(shè)MN的中點為P,⊙P與AB的切點為D,連接PD,連接CP,CD,則有PD⊥AB;
∵AB=13,AC=12,
∴BC= =5.
∵PC+PD=MN,
∴PC+PD≥CD,MN≥CD.
∴當MN=CD時,MN有最小值.
∵PD⊥AB,
∴CD⊥AB.
∵ ABCD= BCAC,
∴CD= = = .
∴CD的最小值 .
∴MN的最小值為 .
所以答案是: .
【考點精析】本題主要考查了切線的性質(zhì)定理的相關(guān)知識點,需要掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,邊長為5,D為AC邊上一動點,連接BD,⊙O為△ABD的外接圓,過點A作AE∥BC交⊙O于E,連接DE,則△BDE的面積的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣x+4與x軸交于點A,B,B點的坐標為(﹣4,0),與y軸交于點C.
(1)求拋物線的解析式和對稱軸.
(2)連接AC、BC,在x軸下方的拋物線上求一點M,使△ABM與△ABC的面積相等.
(3)在x軸下方作平行于x軸的直線l,與拋物線交于點D、E兩點(點D在對稱軸的左側(cè)).過點D、E分別作x軸的垂線,垂足分別為G、F,當矩形DEFG中DE=2DG時,求D點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論:
①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解七年級學生課外活動情況,隨機調(diào)查了該校若干名學生,調(diào)查他們喜歡各類課外活動的情況(課外活動分為四類:A﹣﹣喜歡打乒乓球的人,B﹣﹣喜歡踢足球的人,C﹣﹣喜歡打籃球的人,D﹣﹣喜歡其他的人),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)統(tǒng)計圖信息完成下列問題:
(1)調(diào)查的學生人數(shù)為人.
(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖.
(3)若該校七年級共有600人,請估計七年級學生中喜歡打乒乓球的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點、、在同一直線上,、、都是射線,,與互為余角.
(1)與有何關(guān)系?請證明你的結(jié)論;
(2)與有何關(guān)系?請證明你的結(jié)論;
(3)與有何關(guān)系?請證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com