【題目】RtABC中,∠ACB90°,⊙O是△ABC的外接圓,點(diǎn)D上一點(diǎn),過(guò)點(diǎn)C作⊙O的切線PC,直線PCBA的延長(zhǎng)線于點(diǎn)P,交BD的延長(zhǎng)線于點(diǎn)E

1)求證:∠PCA=∠PBC

2)若PC8,PA4,∠ECD=∠PCA,以點(diǎn)C為圓心,半徑為5作⊙C,試判斷⊙C與直線BD的位置關(guān)系.

【答案】1)證明見(jiàn)解析;(2)相交,理由見(jiàn)解析.

【解析】

1)根據(jù)切線的性質(zhì)得到∠PCO90°,根據(jù)余角的性質(zhì)得到∠PCA=∠BCO,由OB=OC可得∠PBC=∠BCO,進(jìn)一步即得結(jié)論;

2)先證明PCA∽∠PBC,再根據(jù)相似三角形的性質(zhì)求得AB的長(zhǎng)和的值,進(jìn)而可由勾股定理求得ACBC的長(zhǎng),然后再證明ABC∽△CBE,根據(jù)相似三角形的性質(zhì)即可求得圓心OBD的距離,再與圓的半徑比較即得結(jié)論.

解:(1)∵∠ACB90°,

∴∠ACO+BCO90°

PC是⊙O的切線,

∴∠PCO90°,

∴∠PCA+ACO90°,

∴∠PCA=∠BCO,

OCOB

∴∠PBC=∠BCO,

∴∠PCA=∠PBC

2)∵∠PCA=∠PBC,∠P=∠P

∴△PCA∽∠PBC,

,即,

AB12,

∴設(shè)ACk,BC2k,則AB12

k,

ACBC,

∵∠DCE=∠PCA

∴∠DCE=∠ABC,

∵∠CDE=∠BAC,∠BAC+ABC90°,

∴∠DCE+CDE90°

∴∠CED90°

CEBD,

OCBE,

∴∠BCO=∠CBE=∠CBO

∴△ABC∽△CBE,

,∴ ,

解得:CE,即圓心OBD的距離為,

∵⊙C的半徑為55,

∴⊙C與直線BD的位置關(guān)系是相交.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,FAB上一點(diǎn),EBC延長(zhǎng)線上一點(diǎn),且AFEC,連結(jié)EFDE,DF,MFE中點(diǎn),連結(jié)MC,設(shè)FEDC相交于點(diǎn)N.則4個(gè)結(jié)論:①DEDF;②∠CME=CDE;③DG2=GN GE;④若BF2,則正確的結(jié)論有( )個(gè).

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 xOy中,反比例函數(shù) y x 0 的圖象經(jīng)過(guò)點(diǎn) A2,3 ,直線y ax , y 與反比例函數(shù) y x 0 分別交于點(diǎn) B,C兩點(diǎn).

1)直接寫(xiě)出 k 的值 ;

2)由線段 OBOC和函數(shù) y x 0 B,C 之間的部分圍成的區(qū)域(不含邊界) W

當(dāng) A點(diǎn)與 B點(diǎn)重合時(shí),直接寫(xiě)出區(qū)域 W 內(nèi)的整點(diǎn)個(gè)數(shù) ;

若區(qū)域 W內(nèi)恰有 8個(gè)整點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出 a的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),其中點(diǎn)B的坐標(biāo)為B4,0),拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)D,CEAB,并與拋物線的對(duì)稱(chēng)軸交于點(diǎn)E.現(xiàn)有下列結(jié)論:①a0;②b0;③4a+2b+c0;④AD+CE4.其中所有正確結(jié)論的序號(hào)是( 。

A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=x2mx3與直線y=2x+3m在﹣2x2之間有且只有一個(gè)公共點(diǎn),則m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線交x軸于A,B兩點(diǎn)(AB右邊),A3,0),B1,0)交y軸于C點(diǎn),C0,3),連接AC;

1)求拋物線的解析式;

2P為拋物線上的一點(diǎn),作PECAE點(diǎn),且CE=3PE,求P點(diǎn)坐標(biāo);

3)將原拋物線向上平移1個(gè)單位拋物線的對(duì)稱(chēng)軸交x軸于H點(diǎn),過(guò)H作直線MHNH,當(dāng)MHNH時(shí),求MN恒過(guò)的定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹(shù)上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點(diǎn)B處,風(fēng)箏掛在建筑物上方的樹(shù)枝點(diǎn)G處(點(diǎn)G在FE的延長(zhǎng)線上).經(jīng)測(cè)量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點(diǎn)G與建筑物頂點(diǎn)D及風(fēng)箏線在手中的點(diǎn)A在同一條直線上,點(diǎn)A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.

(1)求風(fēng)箏距地面的高度GF;

(2)在建筑物后面有長(zhǎng)5米的梯子MN,梯腳M在距墻3米處固定擺放,通過(guò)計(jì)算說(shuō)明:若兵兵充分利用梯子和一根米長(zhǎng)的竹竿能否觸到掛在樹(shù)上的風(fēng)箏?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)的一個(gè)數(shù)學(xué)興趣小組在本校學(xué)生中開(kāi)展了主題為霧霾知多少的專(zhuān)題調(diào)查括動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷調(diào)查的結(jié)果分為A.非常了解、B.比較了解、C.基本了解、D.不太了解四個(gè)等級(jí),將所得數(shù)據(jù)進(jìn)行整理后,繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,請(qǐng)你結(jié)合圖表中的信息解答下列問(wèn)題

等級(jí)

A

B

C

D

頻數(shù)

40

120

36

n

頻率

0.2

m

0.18

0.02

1)表中m   ,n   

2)扇形統(tǒng)計(jì)圖中,A部分所對(duì)應(yīng)的扇形的圓心角是   °,所抽取學(xué)生對(duì)丁霧霾了解程度的眾數(shù)是   

3)若該校共有學(xué)生1500人,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)這些學(xué)生中比較了解人數(shù)約為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案