【題目】如圖,正方形ABCD中,FAB上一點,EBC延長線上一點,且AFEC,連結(jié)EF,DEDF,MFE中點,連結(jié)MC,設(shè)FEDC相交于點N.則4個結(jié)論:①DEDF;②∠CME=CDE;③DG2=GN GE;④若BF2,則正確的結(jié)論有( )個.

A.4B.3C.2D.1

【答案】A

【解析】

①根據(jù)正方形的性質(zhì)可證明,則可判斷①正誤;

②首先利用和直角三角形斜邊中線的性質(zhì)得出,然后利用三角形外角的性質(zhì)和直角三角形兩銳角互余即可判斷;

③首先證明,則有,即可判斷③的正誤;

④首先利用平行線分線段成比例求出MH的長度,然后解直角三角形即可求出MC的長度,由此可判斷④的正誤.

∵四邊形ABCD是正方形,

,

中,

,

,故①正確;

連接DM,BM

,

,

,

∵點MEF的中點,

,

中,

,

,

,故②正確;

,

,

,故③正確;

過點MBCH

,

,

,故④正確;

∴正確的有:①②③④,

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,四邊形中,,點出發(fā),以每秒2個單位長度的速度,按的順序在邊上勻速運動,設(shè)點的運動時間為秒,的面積為關(guān)于的函數(shù)圖像如圖②所示,當運動到中點時,的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD,等腰直角三角板的直角頂點落在正方形的頂點D處,使三角板繞點D旋轉(zhuǎn).

1)當三角板旋轉(zhuǎn)到圖1的位置時,猜想CEAF的數(shù)量關(guān)系,并加以證明;

2)在(1)的條件下,若,求∠AED的度數(shù);

3)若BC4,點M是邊AB的中點,連結(jié)DM,DMAC交于點O,當三角板的邊DF與邊DM重合時(如圖2),若,求DN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標系中有兩點A(0,1),B(﹣1,0),動點P在反比例函數(shù)y=的圖象上運動,當線段PA與線段PB之差的絕對值最大時,點P的坐標為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段ABO的直徑C,EO,CDAB垂足為點D,連接BEBE與線段CD相交于點F

1)求證CFBF;

2)若cosABEAB的延長線上取一點M,使BM4,⊙O的半徑為6.求證直線CMO的切線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C.某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預(yù)計比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:

(1)A型自行車去年每輛售價多少元?

(2)該車行今年計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應(yīng)如何組織進貨才能使這批自行車銷售獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的角平分線.以為圓心,為半徑作

1)求證:的切線;

2)已知于點,延長于點,求的值.

3)在(2)的條件下,設(shè)的半徑為,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=6BC=8,點E是對角線BD的中點,直角∠GEF的兩直角邊EFEG分別交CD、BC于點FG

1)若點F是邊CD的中點,求EG的長;

2)當直角∠GEF繞直角頂點E旋轉(zhuǎn),旋轉(zhuǎn)過程中與邊CDBC交于點F、G.∠EFG的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tanEFG的值;

3)如圖3,連接CEFG于點H,若,請求出CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,⊙O是△ABC的外接圓,點D上一點,過點C作⊙O的切線PC,直線PCBA的延長線于點P,交BD的延長線于點E

1)求證:∠PCA=∠PBC

2)若PC8,PA4,∠ECD=∠PCA,以點C為圓心,半徑為5作⊙C,試判斷⊙C與直線BD的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案