
解:(1)∵四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(-3,0),(0,1),
∴B(-3,1),
若直線經(jīng)過點(diǎn)A(-3,0)時,則b=

,
若直線經(jīng)過點(diǎn)B(-3,1)時,則b=

,
若直線經(jīng)過點(diǎn)C(0,1)時,則b=1,
①若直線與折線OAB的交點(diǎn)在OA上時,即1<b≤

,如圖1,
此時E(-2b,0),
∴S=

OE•CO=

×2b×1=b;
②若直線與折線OAB的交點(diǎn)在BA上時,即

<b<

,如圖2

此時E(-3,

),D(2-2b,1),
∴S=S
矩-(S
△OCD+S
△OAE+S
△DBE)
=3-[

(2b-2)×1+

×(5-2b)•(

-b)+

×3(b-

)]
=

b-b
2,
∴S=

;
(2)如圖3,設(shè)O
1A
1與CB相交于點(diǎn)M,OA與C
1B
1相交于點(diǎn)N,則矩形O
1A
1B
1C
1與矩形OABC的重疊部分的面積即為
四邊形DNEM的面積.
由題意知,DM∥NE,DN∥ME,
∴四邊形DNEM為平行四邊形,
根據(jù)軸對稱知,∠MED=∠NED,

又∠MDE=∠NED,
∴∠MED=∠MDE,
∴MD=ME,
∴平行四邊形DNEM為菱形.
過點(diǎn)D作DH⊥OA,垂足為H,
由題易知,

,
∴

=

,DH=1,
∴HE=2,
設(shè)菱形DNEM的邊長為a,
則在Rt△DHN中,由勾股定理知:a
2=(2-a)
2+1
2,
∴a=

,
∴S
四邊形DNEM=NE•DH=

.
∴矩形O
1A
1B
1C
1與矩形OABC的重疊部分的面積不發(fā)生變化,面積始終為

.
分析:(1)要表示出△ODE的面積,要分兩種情況討論,①如果點(diǎn)E在OA邊上,只需求出這個三角形的底邊OE長(E點(diǎn)橫坐標(biāo))和高(D點(diǎn)縱坐標(biāo)),代入三角形面積公式即可;②如果點(diǎn)E在AB邊上,這時△ODE的面積可用長方形OABC的面積減去△OCD、△OAE、△BDE的面積;
(2)重疊部分是一個平行四邊形,由于這個平行四邊形上下邊上的高不變,因此決定重疊部分面積是否變化的因素就是看這個平行四邊形落在OA邊上的線段長度是否變化.
點(diǎn)評:本題是一個動態(tài)圖形中的面積是否變化的問題,看一個圖形的面積是否變化,關(guān)鍵是看決定這個面積的幾個量是否變化,本題題型新穎,是個不可多得的好題,有利于培養(yǎng)學(xué)生的思維能力,但難度較大,具有明顯的區(qū)分度.