【題目】已知一個(gè)菱形的兩個(gè)頂點(diǎn)與一個(gè)正方形的兩個(gè)頂點(diǎn)重合,并且這兩個(gè)四邊形沒有公共邊,菱形的面積為24cm2,正方形的面積為32cm2,則菱形的邊長為______________cm.

【答案】

【解析】

如圖1,由正方形ABCD的面積為32cm2,得到BC=4cm,求得EF=6,連接EFBCO,根據(jù)勾股定理得到菱形的邊長為cm;②如圖2,由正方形ABCD的面積為32cm2,得到BD=8cm,求得EF=6,連接EFBCO,根據(jù)勾股定理得到菱形的邊長為5cm.③ACBD為邊的菱形,也滿足條件,

解:①如圖1,

∵正方形ABCD的面積為32cm2

BC=4cm,

∵菱形EBFC面積為24cm2,

EFBC=24

EF=6,

連接EFBCO

EFBC,BO=CO=BC=2,OE=EF=3,

,,

∴菱形的邊長為cm

②如圖2,∵正方形ABCD的面積為32cm2,

BD=8cm,

∵菱形EBFC面積為24cm2,

EFBC=24

EF=6,

連接EFBCO

EFBC,BO=CO=BD=4,OE=EF=3

=5,

∴菱形的邊長為5cm;

ACBD為邊的菱形,也滿足條件.

綜上所述,菱形的邊長為58

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作體驗(yàn):如圖,在矩形ABCD中,點(diǎn)E、F分別在邊ADBC上,將矩形ABCD沿直線EF折疊,使點(diǎn)D恰好與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C'處.點(diǎn)P為直線EF上一動(dòng)點(diǎn)(不與E、F重合),過點(diǎn)P分別作直線BEBF的垂線,垂足分別為點(diǎn)MN,以PM、PN為鄰邊構(gòu)造平行四邊形PMQN

1)如圖1,求證:BE=BF

2)特例感知:如圖2,若DE=5,CF=3,當(dāng)點(diǎn)P在線段EF上運(yùn)動(dòng)時(shí),求平行四邊形PMQN的周長;

3)類比探究:如圖3,當(dāng)點(diǎn)P在線段EF的延長線上運(yùn)動(dòng)時(shí),若DE=a,CF=b.請(qǐng)直接用含ab的式子表示QMQN之間的數(shù)量關(guān)系.(不要求寫證明過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線MNx軸,y軸分別相交于A,C兩點(diǎn),分別過A,C兩點(diǎn)作x軸,y軸的垂線相交于B點(diǎn),且OAOCOAOC)的長分別是一元二次方程x2﹣14x+48=0的兩個(gè)實(shí)數(shù)根.

1)求C點(diǎn)坐標(biāo);

2)求直線MN的解析式;

3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,BC三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將下列各數(shù)填入相應(yīng)的括號(hào)內(nèi):

2.5,0,8,﹣2,,﹣1.121121112……

正數(shù)集合:{   }

負(fù)數(shù)集合:{   };

整數(shù)集合:{   };

無理數(shù)集合:{   }

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,﹣4)、Q(m,n)在函數(shù)(x>0)的圖象上,當(dāng)m>1時(shí),過點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A,B;過點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)C、D.QD交PA于點(diǎn)E,隨著m的增大,四邊形ACQE的面積(

A.減小 B.增大 C.先減小后增大 D.先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】股民銘銘上星期五買進(jìn)萱萱公司的股票1000股,每股27元,下表為本周內(nèi)每日該股票的漲跌情況(單位:元)(注:用正數(shù)記股價(jià)比前一日上升數(shù),用負(fù)數(shù)記股價(jià)比前一日下降數(shù))

(1)星期二收盤時(shí),每股是多少元?

(2)本周內(nèi)最高價(jià)是每股多少元?最低價(jià)每股多少元?

(3)已知銘銘買進(jìn)股票時(shí)付了購買金額0.1%的手續(xù)費(fèi),賣出時(shí)需付成交額0.15%的手續(xù)費(fèi)和0.1%的交易稅,如果銘銘在星期五收盤前將全部股票賣出,他的收益(獲利)情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)ym<0)位于第二象限的圖像上的一個(gè)動(dòng)點(diǎn),過點(diǎn)AACx

軸于點(diǎn)C;M為是線段AC的中點(diǎn),過點(diǎn)MAC的垂線,與反比例函數(shù)的圖像及y軸分別交于B、

D兩點(diǎn).順次連接A、B、C、D.設(shè)點(diǎn)A的橫坐標(biāo)為n

(1)求點(diǎn)B的坐標(biāo)(用含有m、n的代數(shù)式表示);

(2)求證:四邊形ABCD是菱形;

(3)若△ABM的面積為2,當(dāng)四邊形ABCD是正方形時(shí),求直線AB的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車租賃公司要購買轎車和面包車共輛.其中面包車不能超過轎車的兩倍,轎車每輛萬元,面包車每輛萬元,公司可投入的購車款不超過61萬元.

(小題1)符合公司要求的購買方案有哪幾種?請(qǐng)說明理由.

(小題2)如果每輛轎車的日租金為元,每輛面包車的日租金為元.假設(shè)新購買的這輛車每日都可租出,要使這輛車的日租金收入不低于1600元,那么應(yīng)選擇以上哪種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小李某天下午運(yùn)營全是在東西走向的人民大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行駛里程如下:單位:千米

+15, -3, +14,-11,+10,-12,+4,-15,+16,-18

1他將最后一名乘客送到目的地時(shí),距下午出車地點(diǎn)是多少千米?

2若汽車耗油量為千米,這天下午共耗油多少升

查看答案和解析>>

同步練習(xí)冊(cè)答案