【題目】如圖,六邊形ABCDEF的六個內角都相等,若AB=1,BC=CD=3,DE=2,則這個六邊形的周長等于_____

【答案】15.

【解析】

如圖,分別作線段AB、CD、EF的延長線和反向延長線,設它們分別交于點G、H、P.由條件六邊形ABCDEF的六個角都是120°,可得六邊形ABCDEF的每一個外角的度數(shù)都是60°,于是△AHF、△BGC、△DPE、△GHP都是等邊三角形,再由已知條件可求AFEF的長,從而可求得結果.

解:如圖,分別作線段AB、CD、EF的延長線和反向延長線,設它們分別交于點G、H、P

∵六邊形ABCDEF的六個角都是120°,

∴六邊形ABCDEF的每一個外角的度數(shù)都是60°

∴△AHF、△BGC、△DPE、△GHP都是等邊三角形.

GC=BC=3,DP=DE=2

GH=GP=GC+CD+DP=3+3+2=8,

FA=HA=GHABBG=813=4,

EF=PHHFEP=842=2

∴六邊形的周長為1+3+3+2+4+2=15

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某初中學校欲向高一級學校推薦一名學生,根據(jù)規(guī)定的推薦程序:首先由本年級200名學生民主投票,每人只能推薦一人(不設棄權票),選出了票數(shù)最多的甲、乙、丙三人.投票結果統(tǒng)計如圖一:

其次,對三名候選人進行了筆試和面試兩項測試.各項成績如下表所示:

測試項目

測試成績/

筆試

92

90

95

面試

85

95

80

圖二是某同學根據(jù)上表繪制的一個不完全的條形圖.

請你根據(jù)以上信息解答下列問題:

(1)補全圖一和圖二;

(2)請計算每名候選人的得票數(shù);

(3)若每名候選人得一票記1分,投票、筆試、面試三項得分按照2:5:3的比確定,計算三名候選人的平均成績,成績高的將被錄取,應該錄取誰?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOC與∠BOC互余,OD平分∠BOC,∠AOE2EOC

1)若∠AOD75°,求∠AOE的度數(shù).

2)若∠DOE36°,求∠EOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國民體質監(jiān)測中心等機構開展了青少年形體測評.專家組隨機抽查了某市若干名初中學生坐姿、站姿、走姿的好壞情況.我們對專家的測評數(shù)據(jù)作了適當處理(如果一個學生有一種以上不良姿勢,我們以他最突出的一種作記載),并將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中所給信息解答下列問題:

1】請將兩幅統(tǒng)計圖補充完整;

2】在這次形體測評中,一共抽查了 名學生,如果全市有10萬名初中生,那么全市初中生中,三姿良好的學生約有 人;

3】根據(jù)統(tǒng)計結果,請你簡單談談自己的看法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩城相距600千米,甲、乙兩車同時從A城出發(fā)駛向B城,甲車到達B城后立即返回.如圖是它們離A城的距離y(千米)與行駛時間 x(小時)之間的函數(shù)圖象.

1)求甲車行駛過程中yx之間的函數(shù)解析式,并寫出自變量x的取值范圍;

2)當它們行駛7了小時時,兩車相遇,求乙車速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某縣為創(chuàng)建省文明衛(wèi)生城市,計劃將城市道路兩旁的人行道進行改造,經調查可知,若該工程由甲工程隊單獨來做恰好在規(guī)定時間內完成;若該工程由乙工程隊單獨完成,則需要的天數(shù)是規(guī)定時間的2倍,若甲、乙兩工程隊合作6天后,余下的工程由甲工程隊單獨來做還需3天完成.

(1)問該縣要求完成這項工程規(guī)定的時間是多少天?

(2)已知甲工程隊做一天需付給工資5萬元,乙工程隊做一天需付給工資3萬元.現(xiàn)該工程由甲、乙兩個工程隊合作完成,該縣準備了工程工資款65萬元.請問該縣準備的工程工資款是否夠用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,DAC邊上的一點,DGAB,延長ABE,使BE=GD,連接DEBCF.

(1)求證:GF=BF;

(2)ABC的邊長為a,BE的長為b,且a,b滿足(a﹣7)2+b2﹣6b+9=0,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于O,OECD,且∠BOD的度數(shù)是∠AOD5倍.

求:(1)∠AOD、∠BOD的度數(shù);(2)∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點EAB邊上一點,將AED沿直線DE翻折,點A落在點P處,且DPBC,垂足為F

1)求EDP的度數(shù)

2)過D點作DGDCABG,AG=FC

求證:四邊形ABCD為菱形

查看答案和解析>>

同步練習冊答案