【題目】如圖,∠AOC與∠BOC互余,OD平分∠BOC,∠AOE=2∠EOC.
(1)若∠AOD=75°,求∠AOE的度數(shù).
(2)若∠DOE=36°,求∠EOC的度數(shù).
【答案】(1)40°;(2)18°
【解析】
(1)由∠AOC與∠BOC互余可得∠AOC+∠BOC=90°,根據(jù)角的和差關(guān)系可得∠BOD=15°,再根據(jù)角平分線的定義可得∠BOC=30°,從而得出∠AOC的度數(shù),然后根據(jù)∠AOE=2∠EOC即可求出∠AOE的度數(shù);
(2)設(shè)∠EOC=x,則∠AOE=2x,根據(jù)題意列方程求解即可.
解:(1)∵∠AOC與∠BOC互余,
∴∠AOC+∠BOC=90°,
即∠AOB=90°,
∵∠AOD=75°,
∴∠BOD=15°,
又∵OD平分∠BOC,
∴∠BOC=30°,
∴∠AOC=60°,
又∵∠AOE=2∠EOC,
∴;
(2)∠EOC=x,則
∠DOC=∠DOE﹣∠EOC=36°﹣x,
∵OD平分∠BOC,
∴∠BOC=2∠DOC=2(36°﹣x),
又∵∠AOE=2∠EOC,
∴∠AOE=2x,
∴2x+x+2(36°﹣x)=90°,
∴x=18°.
即∠EOC=18°.
科目:初中數(shù)學 來源: 題型:
【題目】觀察理解,并解決問題.
問題情境:如圖所示,用一些相同的小正方形,拼在一起,排成如下的一些大正方形:
問題解決:(1)完成下表:
圖序號 | 1 | 2 | 3 | 4 | … | |
每一行小正方形的個數(shù) | 1 | 2 | 3 | ______ | … | ______ |
陰影小正方形的個數(shù) | 1 | 3 | 5 | ______ | … | ______ |
(2)根據(jù)圖形規(guī)律推測:______(用含的代數(shù)式表示)
(3)像(1),(2)這樣,根據(jù)某類事物的部分對象具有的某種性質(zhì),推出這類事物的所有對象具有的這種性質(zhì)的推理,叫做歸納推理.對于科學的發(fā)現(xiàn),歸納推理是十分有用的,通過觀察、實驗,對有限個對象的性質(zhì)作歸納整理,提出對某類事物帶有規(guī)律性的猜測,是科學研究的基本方法.請觀察下列等式的規(guī)律:第一個等式:;第二個等式:;第三個等式:;…猜想并直接寫出第個等式.(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AB,點C在直線AB上,D為線段BC的中點.
(1)若AB=8 ,AC=2,求線段CD的長.
(2)若點E是線段AC的中點,直接寫出線段DE和AB的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:O是直線AB上一點,∠AOC=50°,OD是∠BOC的角平分線,OE⊥OC于點O.求∠DOE的度數(shù).(請補全下面的解題過程)
解:∵O是直線AB上一點,∠AOC=50°,
∴∠BOC=180°-∠AOC= °.
∵ OD是∠BOC的角平分線,
∴∠COD= ∠BOC .( )
∴∠COD=65°.
∵OE⊥OC于點O,(已知).
∴∠COE= °.( )
∴∠DOE=∠COE-∠COD= ° .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學成就.《九章算術(shù)》中記載:“今有人共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)幾何?”
譯文:“有幾個人共同出錢買雞,如果每人出九錢,那么多了十一錢;如果每人出六錢,那么少了十六錢.問:有幾個人共同出錢買雞?設(shè)有x個人共同買雞,根據(jù)題意列一元一次方程._____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,城氣象臺測得臺風中心在城正西方向的處,以每小時的速度向南偏東的方向移動,距臺風中心的范圍內(nèi)是受臺風影響的區(qū)域.
(1)求城與臺風中心之間的最小距離;(2)求城受臺風影響的時間有多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,江陰實驗中學初三研究性學習小組要測量學校旗桿AB的高度,首先在初三樓一樓C 處測得旗桿頂部的仰角為60°,然后在初三樓三樓D處測得旗桿頂部的仰角為30°,已知旗桿底部與教學樓一樓在同一水平線上,若CD=8米,求旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O 為坐標原點,P、Q 是反比例函數(shù)(x>0)圖象上的兩點,過點 P、Q 分別作直線且與 x、y 軸分別交于點 A、B和點 M、N.已知點 P 為線段 AB 的中點.
(1)求△AOB 的面積(結(jié)果用含 a 的代數(shù)式表示);
(2)當點 Q 為線段 MN 的中點時,小菲同學連結(jié) AN,MB 后發(fā)現(xiàn)此時直線 AN 與直線MB 平行,問小菲同學發(fā)現(xiàn)的結(jié)論正確嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com