【題目】如圖,為半圓直徑,為圓周上兩點(diǎn),且,交于點(diǎn),則圖中與相等的角有(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

【答案】D

【解析】

首先與∠BCE相等的角有對(duì)頂角∠DCA.由于AB O的直徑,可得∠ADB=90°;已知AD=DE,根據(jù)垂徑定理可知ODAE;根據(jù)等角余角相等,可得出∠DCA=ADO=DAO;易證得OAD≌△OED,因此∠DAB=ADO=ODE=DEO;因此與∠BCE相等的角有5個(gè):∠DCA、OAD、ODA、ODE、OED.

∵在ADODOE

OADOED(SSS),

∴∠DAB=EDOADO=DEO,

AO=DO

∴∠DAB=ADO,

∴∠DAB=ADO=ODE=DEO

AB是直徑,

AD=DE,

∴∠ABD=DBE

∴∠DAB=BCE,

∴∠DCA=DAB=ADO=ODE=DEO,

則與∠ECB相等的角有5個(gè).

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt中,,分別以點(diǎn)AC為圓心,大于長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)M、N,連結(jié)MN,與AC、BC分別交于點(diǎn)D、E,連結(jié)AE

1)求;(直接寫(xiě)出結(jié)果)

2)當(dāng)AB=3,AC=5時(shí),求的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在每個(gè)小正方形的邊長(zhǎng)為的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).從一個(gè)格點(diǎn)移動(dòng)到與之相距的另一個(gè)格點(diǎn)的運(yùn)動(dòng)稱為一次跳馬變換.例如,在的正方形網(wǎng)格圖形中(如圖1),從點(diǎn)A經(jīng)過(guò)一次跳馬變換可以到達(dá)點(diǎn)B,C,DE等處.現(xiàn)有的正方形網(wǎng)格圖形(如圖2),則從該正方形的頂點(diǎn)M經(jīng)過(guò)跳馬變換到達(dá)與其相對(duì)的N,最少需要跳馬變換的次數(shù)是_______,現(xiàn)有的正方形網(wǎng)格圖形(如圖3),則從該正方形的頂點(diǎn)經(jīng)過(guò)跳馬變換到達(dá)與其相對(duì)的,最少需要跳馬變換的次數(shù)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A(2,﹣3).

(1)求k的值;

(2)函數(shù)的圖象在哪幾個(gè)象限?yx的增大怎樣變化?

(3)畫(huà)出函數(shù)的圖象;

(4)點(diǎn)B(,﹣12),C(﹣2,4)在這個(gè)函數(shù)的圖象上嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB90°,DAB上一點(diǎn),過(guò)D點(diǎn)作AB垂線,交ACE,交BC的延長(zhǎng)線于F

1)∠1與∠B有什么關(guān)系?說(shuō)明理由.

2)若BCBD,請(qǐng)你探索ABFB的數(shù)量關(guān)系,并且說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:,是圓的兩條直徑,連接,

如圖①,求證:,;

如圖②,過(guò)點(diǎn)于點(diǎn),交圓于點(diǎn),在上取一點(diǎn),使,

求證:四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若從 -3,-1,0,1,3這五個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù)記為a,再?gòu)氖O碌乃膫(gè)數(shù)中任意抽取一個(gè)數(shù)記為b,恰好使關(guān)于x,y的二元一次方程組有整數(shù)解,且點(diǎn)(a,b)落在雙曲線上的概率是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解應(yīng)用

待定系數(shù)法:設(shè)某一多項(xiàng)式的全部或部分系數(shù)為未知數(shù)、利用當(dāng)兩個(gè)多項(xiàng)式為恒等式時(shí),同類項(xiàng)系數(shù)相等的原理確定這些系數(shù),從而得到待求的值.

待定系數(shù)法可以應(yīng)用到因式分解中,例如問(wèn)題:因式分解

因?yàn)?/span>為三次多項(xiàng)式,若能因式分解,則可以分解成一個(gè)一次多項(xiàng)式和一個(gè)二次多項(xiàng)式的乘積.

故我們可以猜想可以分解成,展開(kāi)等式右邊得:

,根據(jù)待定系數(shù)法原理,等式兩邊多項(xiàng)式的同類項(xiàng)的對(duì)應(yīng)系數(shù)相等:,可以求出,

所以

1)若取任意值,等式恒成立,則________

2)已知多項(xiàng)式有因式,請(qǐng)用待定系數(shù)法求出該多項(xiàng)式的另一因式;

3)請(qǐng)判斷多項(xiàng)式是否能分解成的兩個(gè)均為整系數(shù)二次多項(xiàng)式的乘積,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為(  )

A. 3 B. 2 C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案