【題目】如圖,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論中錯誤的是(  )

A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO

【答案】C

【解析】

已知OP平分∠BOA,PC⊥OA,PD⊥OB,根據(jù)角平分線的性質(zhì)定理可得PC=PD,在Rt△ODPRt△OCP中,利用HL定理判定Rt△ODP≌Rt△OCP,根據(jù)全等三角形的性質(zhì)可得OC=OD,∠CPO=∠DPO,由此即可得結(jié)論.

∵OP平分∠BOA,PC⊥OA,PD⊥OB,

∴PC=PD(選項A正確),

Rt△ODPRt△OCP中,

∴Rt△ODP≌Rt△OCP,

∴OC=OD,∠CPO=∠DPO(選項B、D正確),

只有選項C無法證明其正確.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的三邊AB、BC、CA長分別為40、5060.其三條角平分線交于點O,則SABOSBCOSCAO=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】植樹節(jié)來臨之際,學校準備購進一批樹苗,已知2棵甲種樹苗和5棵乙種樹苗共需113元;3棵甲種樹苗和2棵乙種樹苗共需87元.

(1)求一棵甲種樹苗和一棵乙種樹苗的售價各是多少元?

(2)學校準備購進這兩種樹苗共100棵,并且乙種樹苗的數(shù)量不多于甲種樹苗數(shù)量的2倍,請設計出最省錢的購買方案,并求出此時的總費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為貫徹黨的綠水青山就是金山銀山的理念,我市計劃購買甲、乙兩種樹苗共7000株用于城市綠化,甲種樹苗每株24元,一種樹苗每株30相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為、

若購買這兩種樹苗共用去180000元,則甲、乙兩種樹苗各購買多少株?

若要使這批樹苗的總成活率不低于,則甲種樹苗至多購買多少株?

的條件下,應如何選購樹苗,使購買樹苗的費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達點E,此時他仰望兩棵大樹的頂點AD,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是(

A. 13s B. 8s C. 6s D. 5s

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC//x軸,點P是直線AC下方拋物線上的動點.

(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).

(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關(guān)系;

(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E,F分別在邊ABBC上,且AE=AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BPEF于點Q,對于下列結(jié)論:①EF=2BE;②PF=2PE③FQ=4EQ;④△PBF是等邊三角形.其中正確的是( )

A. ①② B. ②③ C. ①③ D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

同步練習冊答案