求值:

已知x、y滿足x2+2y2-2xy-2y+1=0,求xy的值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將一塊a×b×c的長(zhǎng)方體鐵塊(如圖1所示,其中a<b<c,單位:cm)放入一長(zhǎng)方體(如圖2所示)水槽中,并以速度v(單位:cm3/s)勻速向水槽注水,直至注滿為止.已知b為8cm,水槽的底面積為180cm2.若將鐵塊b×c面放至水槽的底面,則注水全過程中水槽的水深y(cm)與注水時(shí)間t(s)的函數(shù)圖象如圖3所示(水槽各面的厚度忽略不計(jì)).
(1)水槽的深度為
 
cm,a=
 
cm;
(2)注水速度v及c的值;
(3)將鐵塊的a×b面、a×c面放至水槽的底面,試分別求注水全過程中水槽的水深y(cm)與注水時(shí)間t(s)的函數(shù)關(guān)系及t的取值范圍,并畫出圖象(不用列表).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、有一個(gè)水箱,它的容積500升,水箱內(nèi)原有水200升,現(xiàn)需將水箱注滿,已知每分鐘注入水10升.
(1)寫出水箱內(nèi)水量Q(升)與時(shí)間t(分)的函數(shù)關(guān)系式;
(2)求自變量t的取值范圍;
(3)畫出函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有一個(gè)裝有進(jìn)出水管的容器,單位時(shí)間內(nèi)進(jìn)水管與出水管的進(jìn)出水量均一定,已知容器的容積為600升,圖中線段OA與BC分別表示單獨(dú)打開一個(gè)進(jìn)水管和單獨(dú)打開一個(gè)出水管時(shí),容器內(nèi)的水量Q(升)隨時(shí)間t(分)變化的函數(shù)關(guān)系.根據(jù)圖象進(jìn)行以下探究:
(1)求進(jìn)水管的進(jìn)水速度和出水管的出水速度;
(2)求線段BC所表示的Q與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)現(xiàn)已知水池內(nèi)有水200升,先打開兩個(gè)進(jìn)水管和一個(gè)出水管2分鐘,再關(guān)上一個(gè)進(jìn)水管,直至把容器放滿,關(guān)上所有水管;3分鐘后,同時(shí)打開三個(gè)出水管,直至把容器中的水放完,畫出這一過程的函數(shù)圖象;并求出在這個(gè)過程中容器內(nèi)的水量Q與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•李滄區(qū)一模)【問題引入】
幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,水桶有大有小.他們?cè)撛鯓优抨?duì)才能使得總的排隊(duì)時(shí)間最短?
假設(shè)只有兩個(gè)人時(shí),設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊(duì)時(shí)間最短,拎小桶者應(yīng)排在拎大桶者前面.這樣,我們可以猜測(cè),幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,要使總的排隊(duì)時(shí)間最短,需將他們按水桶從小到大排隊(duì).
規(guī)律總結(jié):
事實(shí)上,只要不按從小到大的順序排隊(duì),就至少有緊挨著的兩個(gè)人拎著大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設(shè)拎大桶者開始接水時(shí)已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個(gè)人交還位置,即局部調(diào)整這兩個(gè)人的位置,同樣介意計(jì)算兩個(gè)人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時(shí)間未變,這說明只要存在有緊挨著的兩個(gè)人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時(shí)間減少.這樣經(jīng)過一系列調(diào)整后,整個(gè)隊(duì)伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊(duì)時(shí)間就最短.
【方法探究】
一般的,對(duì)某些設(shè)計(jì)多個(gè)可變對(duì)象的數(shù)學(xué)問題,先對(duì)其少數(shù)對(duì)象進(jìn)行調(diào)整,其他對(duì)象暫時(shí)保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標(biāo),最終使問題得到解決,這種數(shù)學(xué)思想就叫做局部調(diào)整法.
【實(shí)踐應(yīng)用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動(dòng)點(diǎn),則BM+MN的最小值是多少?
解析:
(1)先假定N為定點(diǎn),調(diào)整M到合適的位置使BM+MN有最小值(相對(duì)的),容易想到,在AC上作AN′=AN(即作點(diǎn)N關(guān)于AD的對(duì)稱點(diǎn)N'),連接BN′交AD于M,則M點(diǎn)是使BM+MN有相對(duì)最小值的點(diǎn).(如圖2,M點(diǎn)是確定方法找到的)
(2)在考慮點(diǎn)N的位置,使BM+MN最終達(dá)到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時(shí)BM+MN的最小值是
4
4

【實(shí)踐應(yīng)用2】
如圖3,把邊長(zhǎng)是3的正方形等分成9個(gè)小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點(diǎn)P、R,于已知格點(diǎn)Q(每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn))構(gòu)成三角形,則△PQR的最大面積是
2
2
,請(qǐng)?jiān)趫D4中畫出面積最大時(shí)的△PQR的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•菏澤)(1)已知m是方程x2-x-2=0的一個(gè)實(shí)數(shù)根,求代數(shù)式(m2-m)(m-
2
m
+1)
的值.
(2)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x的圖象與反比例函數(shù)y=
k
x
的圖象交于A、B兩點(diǎn).
①根據(jù)圖象求k的值;
②點(diǎn)P在y軸上,且滿足以點(diǎn)A、B、P為頂點(diǎn)的三角形是直角三角形,試寫出點(diǎn)P所有可能的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案