【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論中:①;②;③;④;⑤;其中正確的個(gè)數(shù)為(

A.1B.2C.3D.4

【答案】C

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c0的關(guān)系,然后根據(jù)對稱軸及拋物線的頂點(diǎn)坐標(biāo)情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.

解:①圖象開口向下,與y軸交于負(fù)半軸,對稱軸在y軸右側(cè),

a0b0,c0,

abc0,故①正確;

②當(dāng)x1時(shí),y0

abc0,故②錯(cuò)誤;

③當(dāng)x2時(shí),y0

4a2bc0,故③正確;

④∵對稱軸x,a0,

2ab0,故④正確;

⑤∵拋物線的頂點(diǎn)在x軸的上方,

,

4a0,

4acb24a,故⑤錯(cuò)誤;

綜上所述,正確的個(gè)數(shù)為3個(gè),

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yax24ax+3a2a≠0)的對稱軸與x軸交于點(diǎn)A,將點(diǎn)A向右平移3個(gè)單位長度,向上平移2個(gè)單位長度,得到點(diǎn)B

⑴點(diǎn)A的坐標(biāo)為   ,點(diǎn)B的坐標(biāo)為   ;

⑵若a=﹣1,當(dāng)m1≤xm+1時(shí),函數(shù)yax24ax+3a2的最大值為﹣10,求m的值;

⑶若拋物線與線段AB有公共點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,,,是等腰直角三角形且,把繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得到,把繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到,依此類推,得到的等腰直角三角形的直角頂點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A(﹣3,0)和點(diǎn)B,與y軸交于點(diǎn)C 0,2).

1)求拋物線的表達(dá)式,并用配方法求出頂點(diǎn)D的坐標(biāo);

2)若點(diǎn)E是點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn),求tanCEB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式是y=﹣x2+2x+3

1)用配方法將該二次函數(shù)化成yaxh2+k的形式,并寫出頂點(diǎn)坐標(biāo);

2)在圖中畫出該二次函數(shù)的圖象(不需要列表),并寫出該圖象與x軸的交點(diǎn);

3)當(dāng)0x3時(shí),直接寫出y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線F1yax2+bx1a1)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸于點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(﹣,0),

1)直接寫出b   (用含a的代數(shù)式表示);

2)求點(diǎn)B的坐標(biāo);

3)設(shè)拋物線F1的頂點(diǎn)為P1,將該拋物線平移后得到拋物線F2,拋物線F2的頂點(diǎn)P2滿足P1P2BC,并且拋物線F2過點(diǎn)B,

設(shè)拋物線F2與直線BC的另一個(gè)交點(diǎn)為D,判斷線段BCCD的數(shù)量關(guān)系(不需證明),并直接寫出點(diǎn)D的坐標(biāo);

求出拋物線F2y軸的交點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠BAC90°,ABAC,BC4,點(diǎn)DAC邊上一動點(diǎn),連接BD,以AD為直徑的圓交BD于點(diǎn)E,則線段CE長度的最小值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市開展“美麗自宮,創(chuàng)衛(wèi)同行”活動,某校倡議學(xué)生利用雙休日在“花!眳⒓恿x務(wù)勞動,為了解同學(xué)們勞動情況,學(xué)校隨機(jī)調(diào)查了部分同學(xué)的勞動時(shí)間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息回答下列問題:

(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)扇形圖中的“1.5小時(shí)”部分圓心角是多少度?

(3)求抽查的學(xué)生勞動時(shí)間的眾數(shù)、中位數(shù).

查看答案和解析>>

同步練習(xí)冊答案