【題目】如圖,在邊長(zhǎng)為8的等邊△BCD中,DF⊥BC于點(diǎn)F,點(diǎn)A為射線DF上一動(dòng)點(diǎn),以B為旋轉(zhuǎn)中心,把BA順時(shí)針?lè)较蛐D(zhuǎn)60°至BE,連接EC.
(1)當(dāng)點(diǎn)A在線段DF的延長(zhǎng)線上時(shí),求證:DA=CE;
(2)當(dāng)∠DEC=45°時(shí),連接AC,求四邊形ABDC的面積;
(3)連接EF,當(dāng)EF取得最小值時(shí),線段AB的長(zhǎng)是多少?(只寫(xiě)答案,不要過(guò)程)
【答案】(1)證明見(jiàn)解析;(2)32;(3).
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)由SAS證明△BAD≌△BEC即可得出結(jié)論;
(2)先證明∠DCE=∠BCE+∠BCD=90°,由∠DEC=45°,證得△DCE是等腰直角三角形,從而可得CE的長(zhǎng),即為DA的長(zhǎng),進(jìn)一步即可得出結(jié)果;
(3)由前面的結(jié)論知:在點(diǎn)A運(yùn)動(dòng)的過(guò)程中,始終保持∠BCE=30°不變,即點(diǎn)E在射線CE上運(yùn)動(dòng),于是當(dāng)EF⊥CE時(shí),EF取得最小值,過(guò)點(diǎn)E作EG⊥BC于點(diǎn)G,如圖2所示,利用30°的直角三角形的性質(zhì)和勾股定理可求出BE的長(zhǎng),即為AB的長(zhǎng),問(wèn)題即得解決.
(1)證明:∵把BA順時(shí)針?lè)较蛐D(zhuǎn)60°至BE,
∴BA=BE,∠ABE=60°,
在等邊△BCD中,DB=BC,∠DBC=60°,
∴∠DBA=∠DBC+∠FBA=60°+∠FBA,
∵∠CBE=60°+∠FBA,
∴∠DBA=∠CBE,
在△BAD和△BEC中,∵BA=BE,∠DBA=∠CBE,DB=BC ,
∴△BAD≌△BEC(SAS),
∴DA=CE;
(2)解:如圖1所示:∵DB=DC,DA⊥BC,
∴∠BDA=∠BDC=30°,
∵△BAD≌△BEC,∴∠BCE=∠BDA=30°,
在等邊△BCD中,∵∠BCD=60°,
∴∠DCE=∠BCE+∠BCD=30°+60°=90°,
∵∠DEC=45°,
∴△DCE是等腰直角三角形,
∴CE=CD=8,
由(1)得:DA=CE,
∴DA=CE=8,
∵DF⊥BC,
∴四邊形ABDC的面積=BC×AD=×8×8=32;
(3)由(2)知∠BCE=∠BDA=30°,
∴在點(diǎn)A運(yùn)動(dòng)的過(guò)程中,始終保持∠BCE=30°不變,即點(diǎn)E在射線CE上運(yùn)動(dòng),
∴當(dāng)EF⊥CE時(shí),EF取得最小值,過(guò)點(diǎn)E作EG⊥BC于點(diǎn)G,如圖2所示:
∵△BCD是等邊三角形,DF⊥BC,
∴BF=CF=BC=4,
∵∠BCE=∠FEG=30°,
∴EF=CF=2,
∴FG=EF=1,EG=EF=,
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0)
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1;
(2)畫(huà)出將△ABC繞原點(diǎn)O按逆時(shí)針旋轉(zhuǎn)90°所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2成軸對(duì)稱(chēng)圖形嗎?若成軸對(duì)稱(chēng)圖形,畫(huà)出所有的對(duì)稱(chēng)軸;
(4)△A1B1C1與△A2B2C2成中心對(duì)稱(chēng)圖形嗎?若成中心對(duì)稱(chēng)圖形,寫(xiě)出所有的對(duì)稱(chēng)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店銷(xiāo)售某款童裝,每件售價(jià)60元,每星期可賣(mài)300件,為了促銷(xiāo),該網(wǎng)店決定降價(jià)銷(xiāo)售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣(mài)30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷(xiāo)售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤(rùn),每星期至少要銷(xiāo)售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列是中心對(duì)稱(chēng)圖形但不是軸對(duì)稱(chēng)圖形的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)觀察發(fā)現(xiàn);如圖1,在中,,點(diǎn)在邊上,過(guò)作交于,.填空:
①與是否相似? (直接回答)______;
②_______; .
(2)拓展探究:將繞頂點(diǎn)旋轉(zhuǎn)到圖2所示的位置,猜想與是否相似?若不相似,說(shuō)明理由;若相似,請(qǐng)證明.
(3)遷移應(yīng)用:將繞頂點(diǎn)旋轉(zhuǎn)到點(diǎn)在同一條直線上時(shí),直接寫(xiě)出線段的長(zhǎng)是 .
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】創(chuàng)客聯(lián)盟的隊(duì)員想用3D的打印完成一幅邊長(zhǎng)為6米的正方形作品ABCD,設(shè)計(jì)圖案如圖所示(四周陰影是四個(gè)全等的矩形,用材料甲打印;中心區(qū)是正方形MNPQ,用材料乙打。诖蛴『穸缺3窒嗤那闆r下,兩種材料的消耗成本如表:
材料 | 甲 | 乙 |
價(jià)格(元/米2) | 50 | 40 |
設(shè)矩形的較短邊AH的長(zhǎng)為x米,打印材料的總費(fèi)用為y元.
(1)MQ的長(zhǎng)為 米(用含x的代數(shù)式表示);
(2)求y關(guān)于x的函數(shù)解析式;
(3)當(dāng)中心區(qū)的邊長(zhǎng)不小于2米時(shí),預(yù)備資金1700元購(gòu)買(mǎi)材料一定夠用嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某貨車(chē)銷(xiāo)售公司,分別試銷(xiāo)售兩種型號(hào)貨車(chē)各一個(gè)月,并從中選擇一種長(zhǎng)期銷(xiāo)售,設(shè)每月銷(xiāo)售量為x輛若銷(xiāo)售甲型貨車(chē),每月銷(xiāo)售的利潤(rùn)為y1(萬(wàn)元),已知每輛甲型貨車(chē)的利潤(rùn)為(m+6)萬(wàn)元,(m是常數(shù),9≤m≤11),每月還需支出其他費(fèi)用8萬(wàn)元,受條件限制每月最多能銷(xiāo)售甲型貨車(chē)25輛;若銷(xiāo)售乙型貨車(chē),每月的利潤(rùn)y2(萬(wàn)元)與x的函數(shù)關(guān)系式為y2=ax2+bx-25,且當(dāng)x=10時(shí),y2=20,當(dāng)x=20時(shí),y2=55,受條件限制每月最多能銷(xiāo)售乙型貨車(chē)40輛.
(1)分別求出y1、y2與x的函數(shù)關(guān)系式,并確定x的取值范范圍;
(2)分別求出銷(xiāo)售這兩種貨車(chē)的最大月利潤(rùn);(最大利潤(rùn)能求值的求值,不能求值的用式子表示)
(3)為獲得最大月利潤(rùn),該公司應(yīng)該選擇銷(xiāo)售哪種貨車(chē)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣3ax+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)c直線y=﹣x+4經(jīng)過(guò)點(diǎn)B、C.
(1)求拋物線的表達(dá)式;
(2)過(guò)點(diǎn)A的直線y=kx+k交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,連接AC,當(dāng)直線y=kx+k平分△ABC的面積,求點(diǎn)M的坐標(biāo);
(3)如圖2,把拋物線位于x軸上方的圖象沿x軸翻折,當(dāng)直線y=kx+k與翻折后的整個(gè)圖象只有三個(gè)交點(diǎn)時(shí),求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com