【題目】求知中學有一塊四邊形的空地ABCD,如下圖所示,學校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要250元,問學校需要投入多少資金買草皮?
【答案】學校需要投入9000元資金買草皮.
【解析】
仔細分析題目,需要求得四邊形的面積才能求得結(jié)果.連接BD,在直角三角形ABD中可求得BD的長,由BD、CD、BC的長度關(guān)系可得三角形DBC為一直角三角形,DC為斜邊;由此看,四邊形ABCD由Rt△ABD和Rt△DBC構(gòu)成,則容易求解.
連接BD,
在Rt△ABD中,BD2=AB2+AD2=32+42=52,
在△CBD中,CD2=132,BC2=122,
而122+52=132,
即BC2+BD2=CD2,
∴∠DBC=90°,
S四邊形ABCD=S△BAD+S△DBC=ADAB+DBBC,
=×4×3+×12×5=36.
所以需費用36×250=9000(元),
答:學校需要投入9000元資金買草皮.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BE、CD 相交于點 A,連接 BC,DE,下列條件中不能判斷△ABC∽ADE 的是( )
A. ∠B=∠D B. ∠C=∠E C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某果品超市經(jīng)銷一種水果,已知該水果的進價為每千克15元,通過一段時間的銷售情況發(fā)現(xiàn),該種水果每周的銷售總額相同,且每周的銷售量y(千克)與每千克售價x(元)的關(guān)系如表所示
每千克售價x(元) | 25 | 30 | 40 |
每周銷售量y(千克) | 240 | 200 | 150 |
(1)寫出每周銷售量y(千克)與每千克售價x(元)的函數(shù)關(guān)系式;
(2)由于銷售淡季即將來臨,超市要完成每周銷售量不低于300千克的任務,則該種水果每千克售價最多定為多少元?
(3)在(2)的基礎(chǔ)上,超市銷售該種水果能否到達每周獲利1200元?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=9,BC=12,點M從點A出發(fā),以每秒2個單位長度的速度沿AB方向在AB上運動,以點M為圓心,MA長為半徑畫圓,如圖2,過點M作NM⊥AB,交⊙M于點N,設運動時間為t秒.
(1)填空:BD= ,BM= ;(請用準確數(shù)值或含t的代數(shù)式表示)
(2)當⊙M與BD相切時,
①求t的值;
②求△CDN的面積.
(3)當△CND為直角三角形時,求出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,然后解決問題:
截長法與補短法在證明線段的和、差、倍、分等問題中有著廣泛的應用.具體的做法是在某條線段上截取一條線段等于某特定線段,或?qū)⒛硹l線段延長,使之與某特定線段相等,再利用全等三角形的性質(zhì)等有關(guān)知識來解決數(shù)學問題.
如圖1,在△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE,把AB、AC、2AD集中在△ABE中.利用三角形三邊的關(guān)系即可得4<AE<20 ,則2<AD<10.
(1)問題解決:受到上題解法的啟發(fā),如圖2,在正方形ABCD中,已知:∠EAF=45°,角的兩邊AE、AF分別與BC、CD相交于點E、F,若BE=2,DF=3,求EF的長.可延長 CD到E′,使得DE′=BE,連接AE′,先證△ABE≌△ADE′,進一步證明 △AEF≌△AE′F , 即可得EF=E′F, 那么EF=_________.
(2)問題拓展:
如圖3,在⊙O中,AB、AD是⊙O的弦,且AB=AD,M、N是⊙O上的兩點,∠MAN=∠BAD.
①如圖4,連接MN、MD,求證:MH=BM+DH,DM⊥AN;
②若點C在(點C不與點A、D、N重合)上,連接CB、CD分別交AM、AN或其延長線于點E、F,直接寫出EF、BE、DF之間的等式關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,DC∥AB,AD=5,CD=3,sinA=sinB=,動點P自A點出發(fā),沿著邊AB向點B勻速運動,同時動點Q自點A出發(fā),沿著邊AD﹣DC﹣CB勻速運動,速度均為每秒1個單位,當其中一個動點到達終點時,它們同時停止運動,設點P運動t(秒)時,△APQ的面積為s,則s關(guān)于t的函數(shù)圖象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABO與Rt△CBD在平面直角坐標系中的位置如圖所示,∠ABO=∠CBD=90°,若點A(2,﹣2),∠CBA=60°,BO=BD,則點C的坐標是( )
A. (2,2)B. (1,)C. (,1)D. (2,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明調(diào)查了班級里20位同學本學期購買課外書的花費情況,并將結(jié)果繪制成了如圖的統(tǒng)計圖.在這20位同學中,本學期購買課外書的花費的眾數(shù)和中位數(shù)分別是( 。
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近年來,安全快捷、平穩(wěn)舒適的中國高鐵,為世界高速鐵路商業(yè)運營樹立了新的標桿.隨著中國特色社會主義進入新時代,作為“中國名片”的高速鐵路也將踏上自己的新征程,跑出發(fā)展新速度,這就意味著今后外出旅行的路程與時間將大大縮短,但也有不少游客根據(jù)自己的喜好依然選擇乘坐普通列車;已知從A地到某市的高鐵行駛路程是400千米,普通列車的行駛路程是高鐵行駛路程的1.3倍,請完成以下問題:
(1)普通列車的行駛路程為多少千米?
(2)若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求普通列車和高鐵的平均速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com