【題目】如圖,BECD 相交于點 A,連接 BC,DE,下列條件中不能判斷△ABCADE 的是( )

A. B=∠D B. C=∠E C. D.

【答案】C

【解析】

根據(jù)兩個三角形相似的判定定理來判斷兩邊對應(yīng)成比例且夾角相等,兩個三角形相似.;三邊對應(yīng)成比例,兩個三角形相似兩角對應(yīng)相等,兩個三角形相似。即可分析得出答案。

解:∵∠BAC=∠DAE,

∴當(dāng)∠B=∠D 或∠C=∠E 時,可利用兩角對應(yīng)相等的兩個三角形相似證得△ABC∽ADE, A、B 選項可判斷兩三角形相似;

當(dāng) 時,可得 ,結(jié)合∠BAC=∠DAE,則可證得△ABC∽△AED,而不能得

出△ABC∽△ADE,故 C 不能判斷△ABC∽ADE;

當(dāng) 時,結(jié)合∠BAC=∠DAE,可證得△ABC∽△ADE,故 D 能判斷△ABC∽△ADE;

故本題答案為:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格線的交點叫格點,格點的邊上的一點(請利用網(wǎng)格作圖,保留作圖痕跡).

(1)過點的垂線,交于點

(2)線段 的長度是點OPC的距離;

(3)的理由是

(4)過點C的平行線;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點P和正方形給出如下定義:若正方形的對角線交于點O,四條邊分別和坐標(biāo)軸平行,我們稱該正方形為原點正方形,當(dāng)原點正方形上存在點Q,滿足PQ≤1時,稱點P為原點正方形的友好點.

(1)當(dāng)原點正方形邊長為4時,

①在點P1(0,0)P2(-1,1),P3(32)中,原點正方形的友好點是__________

②點P在直線y=x的圖象上,若點P為原點正方形的友好點,求點P橫坐標(biāo)的取值范圍;

(2)乙次函數(shù)y=-x+2的圖象分別與x軸,y軸交于點A,B,若線段AB上存在原點正方形的友好點,直接寫出原點正方形邊長a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個長方形紙片,邊長如圖所示,面積分別為.

1)①計算:______,______;

②用“<”“=”“>”填空:______

2)若一個正方形紙片的周長與乙長方形的周長相等,面積為.

①該正方形的邊長是______(用含的代數(shù)式表示);

②小方同學(xué)發(fā)現(xiàn):的差與無關(guān).請判斷小方的發(fā)現(xiàn)是否正確,并通過計算說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本學(xué)期第三周周末,七年級27班在人美心善的范老師的帶領(lǐng)下開展了大型綠水青山都是金山銀山的植樹活動.全班一起種植許愿樹和發(fā)財樹.已知購買1棵許愿樹和2棵發(fā)財樹需要42元,購買2棵許愿樹和1棵發(fā)財樹需要48元.

1)你來算一算許愿樹、發(fā)財樹每棵各多少錢?

2)范老師傳達(dá)最高指示:全班種植許原樹和發(fā)財樹共20棵,且許愿樹的數(shù)量不少于發(fā)財樹的數(shù)量,但由于班費資金緊張,范老師還要求兩種樹的總成本不得高于312元.聰明的同學(xué)們,你們知道共有哪幾種種植方案嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點A(2,0),B(﹣1,0),與y軸交于點C,且OC=2,求這條拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD交于點O,AC4BD16,將△ABO沿點A到點C的方向平移,得到△ABO,當(dāng)點A與點C重合時,點A與點B之間的距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求知中學(xué)有一塊四邊形的空地ABCD,如下圖所示,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3mBC=12m,CD=13mDA=4m,若每平方米草皮需要250元,問學(xué)校需要投入多少資金買草皮?

查看答案和解析>>

同步練習(xí)冊答案