在直角坐標平面內(nèi),如果拋物線y=2x2-3經(jīng)過平移后與拋物線y=2x2重合,那么平移的要求是( )
A.沿y軸向上平移3個單位
B.沿y軸向下平移3個單位
C.沿x軸向左平移3個單位
D.沿x軸向右平移3個單位
【答案】分析:根據(jù)拋物線頂點的平移可得拋物線是如何平移的.
解答:解:∵拋物線y=2x2-3的頂點為(0,-3),
拋物線y=2x2的頂點為(0,0),
從(0,-3)到(0,0)是沿y軸向上平移3個單位,
∴拋物線也是如此平移的.
故選A.
點評:本題考查拋物線的平移,用到的知識點為:拋物線的平移要看頂點的平移;只縱坐標改變是上下平移.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

在直角坐標平面內(nèi),O為原點,點A的坐標為(1,0),點C的坐標為(0,4),精英家教網(wǎng)直線CM∥x軸(如圖所示).點B與點A關(guān)于原點對稱,直線y=x+b(b為常數(shù))經(jīng)過點B,且與直線CM相交于點D,連接OD.
(1)求b的值和點D的坐標;
(2)設(shè)點P在x軸的正半軸上,若△POD是等腰三角形,求點P的坐標;
(3)在(2)的條件下,如果以PD為半徑的圓P與圓O外切,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與y軸正半軸交于點C,與x軸交于點A(2精英家教網(wǎng),0)、B(8,0),∠OCA=∠OBC.
(1)求拋物線的解析式;
(2)在直角坐標平面內(nèi)確定點M,使得以點M、A、B、C為頂點的四邊形是平行四邊形,請直接寫出點M的坐標;
(3)若存在一點P到點A、B、C三點的距離相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標平面內(nèi),O為原點,拋物線y=ax2+bx經(jīng)過點A(6,0),且頂點B(m,6)在直線y=2x上.
(1)求m的值和拋物線y=ax2+bx的解析式;
(2)如在線段OB上有一點C,滿足OC=2CB,在x軸上有一點D(10,0),連接DC,且直線DC與y軸交于點E.
①求直線DC的解析式;
②如點M是直線DC上的一個動點,在x軸上方的平面內(nèi)有另一點N,且以O(shè)、E、M、N為頂點的四邊形是菱形,請求出點N的坐標.(直接寫出結(jié)果,不需要過程.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鎮(zhèn)賚縣模擬)如圖,在直角坐標平面內(nèi),函數(shù)y=
mx
(x>0,m是常數(shù))的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,BD與AC交于點H,連接AD.
(1)若△ABD的面積為4,求m值及點B的坐標.
(2)在(1)的條件下,求直線AB的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標平面內(nèi)的△ABC中,點A的坐標為(0,2),點C的坐標為(5,5),要使以A、B、C、D為頂點的四邊形是平行四邊形,且點D坐標在第一象限,那么點D的坐標是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步練習冊答案