【題目】如圖,在正方形ABCD中,AB=4,E是BC邊的中點, F是CD邊上的一點, 且DF=1.若M、N分別是線段AD、AE上的動點,則MN+MF的最小值為________.
【答案】
【解析】
作點F關(guān)于AD的對稱點G,過點G作GN⊥AE于點N,交AD于點M,可證得MG=MF,△MDG≌△MDF,DF=DG=1 ,可推出MN+MF=NG,根據(jù)垂線段最短,可知此時MN+MF的最小值就是NG的長;利用正方形的性質(zhì),可求出BE的長,同時可以推出∠B=∠ANM=∠FDM,∠AMN=∠BAE=∠FMD,再利用有兩組對應(yīng)角相等的三角形相似,可證得△ABE∽△MNA∽△FMD,然后利用相似三角形的性質(zhì)及勾股定理就可求出MN,MG的長,由此看求出NG的長.
作點F關(guān)于AD的對稱點G,過點G作GN⊥AE于點N,交AD于點M,
∴MG=MF,△MDG≌△MDF,DF=DG=1
∴∠GMD=∠DMF
∴MN+MF=MN+MG=NG
根據(jù)垂線段最短,可知此時MN+MF的最小值就是NG的長.
∵正方形BCD,點E是BC的中點
∴BE=BC=AB=2
∴∠B=∠ANM=∠FDM=90°,∠BAE+∠MAN=90°,
∵∠AMN+∠MAN=90°,
∴∠AMN=∠BAE,
∵∠AMN=∠DMG
∴∠AMN=∠BAE=∠FMD
∴△ABE∽△MNA∽△FMD
∴即
解之:MD=2,
∴AM=AD-MD=4-2=2
∴
設(shè)AN=x,則MN=2x
∴AN2+MN2=AM2,
∴x2+4x2=4
解之:AN=x=
∴MN=2AN=;
在Rt△MDG中,MG=
∴NG=MN+MG=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了解某校學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對部分學(xué)生進行了跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.繪制成如下統(tǒng)計圖.
(1)李老師一共調(diào)查了多少名同學(xué)?并將下面條形統(tǒng)計圖補充完整.
(2)若該校有1000名學(xué)生,則數(shù)學(xué)課前預(yù)習(xí)“很好”和“較好”總共約多少人?
(3)為了共同進步,李老師想從被調(diào)查的A類和D類學(xué)生中各隨機選取一位同學(xué)進行“一幫一”互助學(xué)習(xí),求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.(要求列表或樹狀圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點,,點是軸上點右側(cè)一點,以,為兩邊的菱形的頂點落在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達式;
(2)過點作軸的垂線,交反比例函數(shù)的圖象于點,連接,,求的面積:
(3)當(dāng)時,請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,以的中點為圓心,作半圓與相切,點分別是半圓和邊上的動點,連接則的最大值與最小值的和是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形中,在上從向運動,連接交于連接.
(1)證明:無論運動到上的何處,都有;
(2)當(dāng)運動到何處時,?
(3)若從到再從到,在整個運動過程中,為多少時,是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】上周六上午點,小穎同爸爸媽媽一起從西安出發(fā)回安康看望姥姥,途中他們在一個服務(wù)區(qū)休息了半小時,然后直達姥姥家,如圖,是小穎一家這次行程中距姥姥家的距離(千米)與他們路途所用的時間(時)之間的函數(shù)圖象,請根據(jù)以上信息,解答下列問題:
(1)求直線所對應(yīng)的函數(shù)關(guān)系式;
(2)已知小穎一家出服務(wù)區(qū)后,行駛分鐘時,距姥姥家還有千米,問小穎一家當(dāng)天幾點到達姥姥家?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文具店有三種品牌的6個筆記本,價格是4,5,7(單位:元)三種,從中隨機拿出一個本,已知(一次拿到7元本).
(1)求這6個本價格的眾數(shù).
(2)若琪琪已拿走一個7元本,嘉嘉準(zhǔn)備從剩余5個本中隨機拿一個本.
①所剩的5個本價格的中位數(shù)與原來6個本價格的中位數(shù)是否相同?并簡要說明理由;
②嘉嘉先隨機拿出一個本后不放回,之后又隨機從剩余的本中拿一個本,用列表法求嘉嘉兩次都拿到7元本的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備組織一次“研學(xué)之旅”活動,現(xiàn)用抽簽的方式從以下四個地方:九峰公園、柑橘博覽園、平田桐樹坑、長潭水庫(其中九峰公園、平田桐樹坑是愛國主義教育基地)中確定兩個作為活動地點.將四個地點分別寫在4張完全相同的卡片上,背面朝上并洗勻,先從中隨機抽取一張卡片,再從剩下的卡片中隨機抽取一張.則“抽中的兩個地方都是愛國主義教育基地”的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚中華優(yōu)秀傳統(tǒng)文化,某校組織了“古詩詞”知識競賽,由九年級的若干名學(xué)生參加選拔賽,從中選出10名優(yōu)勝者,下面是對參賽學(xué)生成績的不完整統(tǒng)計.
(1)統(tǒng)計表中,=_____;各組人數(shù)的中位數(shù)是_____;統(tǒng)計圖中,組所在扇形的圓心角是_____°;
(2)李明同學(xué)得了88分,他說自己在參加選拔賽的同學(xué)中屬于中午偏上水平,你認為他說的有道理嗎?為什么?
(3)選出的10名優(yōu)勝者中,男生、女生的分布情況如下表.
一班 | 二班 | 三班 | 四班 | 五班 | 六班 | |
男生人數(shù) | 1 | 1 | 2 | 1 | 0 | 0 |
女生人數(shù) | 1 | 0 | 0 | 2 | 1 | 1 |
若從中任選1名男生和1名女生代表學(xué)校參加全區(qū)的比賽,請有列表法或畫樹狀圖法求男生和女生都出在四班的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com