【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:①該產(chǎn)品90天內(nèi)日銷售量(m件)與時間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

②該產(chǎn)品90天內(nèi)每天的銷售價格與時間(第x天)的關(guān)系如下表:

(1)求m關(guān)于x的一次函數(shù)表達(dá)式;

(2)設(shè)銷售該產(chǎn)品每天利潤為y元,請寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤最大?最大利潤是多少?【提示:每天銷售利潤=日銷售量×(每件銷售價格﹣每件成本)】

(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結(jié)果.

【答案】(1)m=﹣2x+200;(2),第40天的銷售利潤最大,最大利潤是7200元;(3)46.

【解析】

試題分析:(1)根據(jù)待定系數(shù)法解出一次函數(shù)解析式即可;

(2)設(shè)利潤為y元,則當(dāng)1≤x<50時, ;當(dāng)50≤x≤90時,,分別求出各段上的最大值,比較即可得到結(jié)論;

(3)直接寫出在該產(chǎn)品銷售的過程中,共有46天銷售利潤不低于5400元.

試題解析:(1)m與x成一次函數(shù),設(shè),將x=1,m=198,x=3,m=194代入,得:,解得:,所以m關(guān)于x的一次函數(shù)表達(dá)式為;

(2)設(shè)銷售該產(chǎn)品每天利潤為y元,y關(guān)于x的函數(shù)表達(dá)式為:,當(dāng)1≤x<50時,=﹣2<0,當(dāng)x=40時,y有最大值,最大值是7200;

當(dāng)50≤x≤90時,,﹣120<0,y隨x增大而減小,即當(dāng)x=50時,y的值最大,最大值是6000;

綜上所述,當(dāng)x=40時,y的值最大,最大值是7200,即在90天內(nèi)該產(chǎn)品第40天的銷售利潤最大,最大利潤是7200元;

(3)在該產(chǎn)品銷售的過程中,共有46天銷售利潤不低于5400元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.

(1)CD與EF平行嗎?請說明理由.
(2)如果∠1=∠2,且∠ACB=110°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( 。

A. 3a+2b=5ab B. 5a﹣2a=3a C. b2b3=b6 D. x+y2=x2+y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌的共享自行車企業(yè)為了解工作日期間地鐵站附近的自行車使用情況,做到精確投放,于星期二當(dāng)天對荔灣區(qū)A、B、C三個地鐵站該品牌自行車后使用量進(jìn)行了統(tǒng)計,繪制如圖1和圖2所示的統(tǒng)計圖,根據(jù)圖中信息解答下列問題:

(1)該品牌自行車當(dāng)天在該三個地鐵站區(qū)域投放了自行車輛.
(2)請補(bǔ)全圖1中的條形統(tǒng)計圖;求出地鐵A站在圖2中所對應(yīng)的圓心角的度數(shù).
(3)按統(tǒng)計情況,若該品牌車計劃在這些區(qū)域再投放1200輛,估計在地鐵B站應(yīng)投入多少輛.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求完成計算:

1)先化簡,再求值:(4ab3﹣8a2b2÷4ab+2a+b)(2a﹣b),其中a=2b=1

2)因式分解:3x2﹣6axy+3ay2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,已知拋物線的頂點(diǎn)為D,與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),E為對稱軸上的一點(diǎn),連接CE,將線段CE繞點(diǎn)E按逆時針方向旋轉(zhuǎn)90°后,點(diǎn)C的對應(yīng)點(diǎn)C′恰好落在y軸上.

(1)直接寫出D點(diǎn)和E點(diǎn)的坐標(biāo);

(2)點(diǎn)F為直線C′E與已知拋物線的一個交點(diǎn),點(diǎn)H是拋物線上C與F之間的一個動點(diǎn),若過點(diǎn)H作直線HG與y軸平行,且與直線C′E交于點(diǎn)G,設(shè)點(diǎn)H的橫坐標(biāo)為m(0<m<4),那么當(dāng)m為何值時,=5:6?

(3)圖2所示的拋物線是由向右平移1個單位后得到的,點(diǎn)T(5,y)在拋物線上,點(diǎn)P是拋物線上O與T之間的任意一點(diǎn),在線段OT上是否存在一點(diǎn)Q,使△PQT是等腰直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2﹣2x與x軸正半軸相交于點(diǎn)A,頂點(diǎn)為B.

(1)用含a的式子表示點(diǎn)B的坐標(biāo);

(2)經(jīng)過點(diǎn)C(0,﹣2)的直線AC與OB(O為原點(diǎn))相交于點(diǎn)D,與拋物線的對稱軸相交于點(diǎn)E,OCD≌△BED,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:a2b﹣2ab+b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測得∠DEB=60°,求C、D兩點(diǎn)間的距離.

查看答案和解析>>

同步練習(xí)冊答案