【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

【答案】30m.

【解析】

試題分析:直接利用等腰三角形的判定與性質得出DE=AE=20,進而求出EF的長,再得出四邊形ACDF為矩形,則CD=AF=AE+EF求出答案.

試題解析:過點D作l1的垂線,垂足為F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE為等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DEcos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四邊形ACDF為矩形,CD=AF=AE+EF=30

答:C.D兩點間的距離為30m.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調查整理出如下信息:①該產(chǎn)品90天內日銷售量(m件)與時間(第x天)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:

②該產(chǎn)品90天內每天的銷售價格與時間(第x天)的關系如下表:

(1)求m關于x的一次函數(shù)表達式;

(2)設銷售該產(chǎn)品每天利潤為y元,請寫出y關于x的函數(shù)表達式,并求出在90天內該產(chǎn)品哪天的銷售利潤最大?最大利潤是多少?【提示:每天銷售利潤=日銷售量×(每件銷售價格﹣每件成本)】

(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD.

(1)圖中除直角外,還有相等的角嗎?請寫出兩對:①;②
(2)如果∠COP=20°,則①∠BOP=°;②∠POF=°.
(3)∠EOC與∠BOF相等嗎? , 理由是
(4)如果∠COP=20°,求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,點A在x軸上,點B的坐標為(8,2),點D的坐標為(0,2),則點C的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,M是AD邊的中點,N是AB邊上的一動點,將△AMN沿MN所在直線翻折得到△A′MN,連接A′C,則A′C長度的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩種酒精,一種濃度是60%,另一種濃度為90%,現(xiàn)在要配制成濃度為70%的酒精300克,問:每種需各取多少克?(200克,100克)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們在學完“平移、軸對稱、旋轉”三種圖形的變化后,可以進行進一步研究,請根據(jù)示例圖形,完成下表.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年春學期小紅同學四次中考數(shù)學測試成績分別是:103,103,105,105,關于這組數(shù)據(jù)下列說法錯誤的是(
A.平均數(shù)是104
B.眾數(shù)是103
C.中位數(shù)是104
D.方差是1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某小區(qū)準備用籬笆圍成一塊矩形花圃ABCD,為了節(jié)省籬笆,一邊利用足夠長的墻,另外三邊用籬笆圍著,再用兩段籬笆EF與GH將矩形ABCD分割成①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,現(xiàn)有總長80m的籬笆,當圍成的花圃ABCD的面積最大時,AB的長為 m.

查看答案和解析>>

同步練習冊答案