25、如圖,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四邊形ABCD是平行四邊形,下列結(jié)論中錯(cuò)誤的是( 。
分析:本題通過(guò)觀察全等三角形,找旋轉(zhuǎn)中心,旋轉(zhuǎn)角,逐一判斷.
解答:解:A、根據(jù)題意可知AE=AB,AC=AD,∠EAC=∠BAD=135°,△EAC≌△BAD,旋轉(zhuǎn)角∠EAB=90°,正確;
B、因?yàn)槠叫兴倪呅问侵行膶?duì)稱(chēng)圖形,要想使△ACB和△DAC重合,△ACB應(yīng)該以對(duì)角線的交點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)180°,即可與△DAC重合,錯(cuò)誤;
C、根據(jù)題意可知∠EAC=135°,∠EAD=360°-∠EAC-∠CAD=135°,AE=AE,AC=AD,△EAC≌△EAD,正確;
D、根據(jù)題意可知∠BAD=135°,∠EAD=360°-∠BAD-∠BAE=135°,AE=AB,AD=AD,△EAD≌△BAD,正確.
故選B.
點(diǎn)評(píng):此題主要考查平行四邊形的對(duì)稱(chēng)性:平行四邊形是中心對(duì)稱(chēng)圖形,對(duì)稱(chēng)中心是兩對(duì)角線的交點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ACD和△AEB都是等腰直角三角形,∠EAB=∠CAD=90°,下列五個(gè)結(jié)論:①EC=BD;②EC⊥BD;③S四邊形EBCD=
12
EC•BD;④S△ADE=S△ABC;⑤△EBF∽△DCF.其中正確的有
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于點(diǎn)F,BD分別交CE、AE于點(diǎn)G、H.試猜測(cè)線段AE和BD的數(shù)量和位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°.四邊形ABCD是平行四邊形,下列結(jié)論中錯(cuò)誤的有( 。
①△ACE以點(diǎn)A為旋轉(zhuǎn)中心,逆時(shí)針?lè)较蛐D(zhuǎn)90°后與△ADB重合,
②△ACB以點(diǎn)A為旋轉(zhuǎn)中心,順時(shí)針?lè)较蛐D(zhuǎn)270°后與△DAC重合,
③沿AE所在直線折疊后,△ACE與△ADE重合,
④沿AD所在直線折疊后,△ADB與△ADE重合,
⑤△ACE的面積等于△ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四邊形ABCD是平行四邊形,下列結(jié)論錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

31、如圖,△ACD和△ABE都是直角等腰三角形,∠DAC和∠EAB是直角,連接CE.
(1)在圖上畫(huà)出△ACE以點(diǎn)A為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°后得到的△AC'E'(只需作出圖形;不寫(xiě)畫(huà)法);
(2)猜想EC與C'E'的位置有什么關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案