【題目】某校兩次購買足球和籃球的支出情況如表:
(1)求購買一個足球、一個籃球的花費各需多少元?(請列方程組求解)
(2)學校準備給幫扶的貧困學校送足球、籃球共計60個,恰逢市場對兩種球的價格進行了調整,足球售價提高了10%,籃球售價降低了10%,如果要求一次性購得這批球的總費用不超過4000元,那么最多可以購買多少個足球?
【答案】(1)80和50元;(2)最多可以購買30個足球.
【解析】
(1)設購買一個足球需要x元,購買一個籃球需要y元,根據(jù):2個足球+3個籃球=310元,5個足球+2個籃球=500元,列出方程解答即可;
(2)設這所學校再次購買購買a個足球,根據(jù)題意列出不等式解答即可.
(1)設購買一個足球需要x元,購買一個籃球的花費需要y元,根據(jù)題意,得:
,解得:.
答:購買一個足球需要80元,購買一個籃球需要50元;
(2)設購買a個足球,根據(jù)題意,得:
(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000
解得:a.
又∵a為正整數(shù),∴a的最大值為30.
答:最多可以購買30個足球.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在菱形ABCD中,對角線AC與BD相交于點O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點F是對角線BD上一動點(點F不與點B重合),將線段AF繞點A順時針方向旋轉60°得到線段AM,連接FM.
(1)求AO的長;
(2)如圖2,當點F在線段BO上,且點M,F(xiàn),C三點在同一條直線上時,求證:AC=AM;
(3)連接EM,若△AEM的面積為40,請直接寫出△AFM的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀對話,解答問題:
(1)分別用a、b表示小冬從小麗、小兵袋子中抽出的卡片上標有的數(shù)字,請用樹狀圖法或列表法寫出(a,b)的所有取值;
(2)求在(a,b)中使關于x的一元二次方程x2﹣ax+2b=0有實數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分10分)如圖,已知⊙的直徑AB=12cm,AC是⊙的弦,過點C作⊙的切線交BA的延長線于點P,連接BC
(1)求證:∠PCA=∠B
(2)已知∠P=40°,點Q在優(yōu)弧ABC上,從點A開始逆時針運動到點C停止(點Q與點C不重合),當△ABQ與△ABC的面積相等時,求動點Q所經過的弧長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB長為12,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D.
(1)求證:AC平分∠DAB.
(2)設AD交⊙O于點M,當∠B=60°時,求弧AM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,滑動調節(jié)式遮陽傘的立柱垂直于地面,為立柱上的滑動調節(jié)點,傘體的截面示意圖為,為中點,,,,.當點位于初始位置時,點與重合(圖2).根據(jù)生活經驗,當太陽光線與垂直時,遮陽效果最佳.
(1)上午10:00時,太陽光線與地面的夾角為(圖3),為使遮陽效果最佳,點需從上調多少距離?(結果精確到)
(2)中午12:00時,太陽光線與地面垂直(圖4),為使遮陽效果最佳,點在(1)的基礎上還需上調多少距離?(結果精確到)
(參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強學生的身體素質,教育行政部門規(guī)定每位學生每天參加戶外活動的平均時間不少于1小時. 為了解學生參加戶外活動的情況,對部分學生參加戶外活動的時間進行抽樣調查,并將調查結果繪制作成如下兩幅不完整的統(tǒng)計圖,
請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次調查中共調查了多少名學生?
(2)求戶外活動時間為1.5小時的人數(shù),并補充頻數(shù)分布直方圖;
(3)戶外活動時間的眾數(shù)和中位數(shù)分別是多少?
(4)若該市共有20000名學生,大約有多少學生戶外活動的平均時間符合要求?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2與x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】善于不斷改進學習方法的小迪發(fā)現(xiàn),對解題進行回顧反思,學習效果更好.某一天小迪有20分鐘時間可用于學習.假設小迪用于解題的時間(單位:分鐘)與學習收益量的關系如圖1所示,用于回顧反思的時間(單位:分鐘)與學習收益的關系如圖2所示(其中是拋物線的一部分,為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間.
(1)求小迪解題的學習收益量與用于解題的時間之間的函數(shù)關系式;
(2)求小迪回顧反思的學習收益量與用于回顧反思的時間的函數(shù)關系式;
(3)問小迪如何分配解題和回顧反思的時間,才能使這20分鐘的學習收益總量最大?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com