【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時(shí),一個(gè)月工作25天.月工資底薪800元,另加計(jì)件工資.加工1件A型服裝計(jì)酬16元,加工1件B型服裝計(jì)酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件A型服裝和2件B型服裝需4小時(shí),加工3件A型服裝和1件B型服裝需7小時(shí).(工人月工資=底薪+計(jì)件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時(shí)?
(2)一段時(shí)間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號(hào)的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運(yùn)用所學(xué)知識(shí)判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

【答案】
(1)

解:設(shè)熟練工加工1件A型服裝需要x小時(shí),加工1件B型服裝需要y小時(shí).

由題意得:,

解得:

答:熟練工加工1件A型服裝需要2小時(shí),加工1件B型服裝需要1小時(shí).


(2)

解:當(dāng)一名熟練工一個(gè)月加工A型服裝a件時(shí),則還可以加工B型服裝(25×8﹣2a)件.

∴W=16a+12(25×8﹣2a)+800,

∴W=﹣8a+3200,

又∵a≥(200-2a)

解得:a≥50,

∵﹣8<0,

∴W隨著a的增大則減小,

∴當(dāng)a=50時(shí),W有最大值2800.

∵2800<3000,

∴該服裝公司執(zhí)行規(guī)定后違背了廣告承諾.


【解析】(1)設(shè)熟練工加工1件A型服裝需要x小時(shí),加工1件B型服裝需要y小時(shí),根據(jù)“一名熟練工加工1件A型服裝和2件B型服裝需4小時(shí),加工3件A型服裝和1件B型服裝需7小時(shí)”,列出方程組,即可解答.
(2)當(dāng)一名熟練工一個(gè)月加工A型服裝a件時(shí),則還可以加工B型服裝(25×8﹣2a)件.從而得到W=﹣8a+3200,再根據(jù)“加工A型服裝數(shù)量不少于B型服裝的一半”,得到a≥50,利用一次函數(shù)的性質(zhì),即可解答.
本題考查了二元一次方程組、一元一次不等式和一次函數(shù)在實(shí)際問題中的綜合應(yīng)用,同時(shí)解題時(shí)要考慮實(shí)際問題中所設(shè)未知數(shù)的條件范圍。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是圓O的切線,切點(diǎn)為B,直線AO交圓O于C、D兩點(diǎn),CD=2,∠DAB=30°,動(dòng)點(diǎn)P在直線AB上運(yùn)動(dòng),PC交圓O于另一點(diǎn)Q.

(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到使Q、C兩點(diǎn)重合時(shí)(如圖1),求AP的長;
(2)點(diǎn)P在運(yùn)動(dòng)過程中,有幾個(gè)位置(幾種情況)使△CQD的面積為?(直接寫出答案)
(3)當(dāng)△CQD的面積為,且Q位于以CD為直徑的上半圓,CQ>QD時(shí)(如圖2),求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會(huì)正籌備一個(gè)“慶畢業(yè)”文藝匯演活動(dòng),現(xiàn)準(zhǔn)備從4名(其中兩男兩女)節(jié)目主持候選人中,隨機(jī)選取兩人擔(dān)任節(jié)目主持人,請用列表法或畫樹狀圖求選出的兩名主持人“恰好為一男一女”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D為邊CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B重合),過D作DO⊥AB,垂足為O,點(diǎn)B′在邊AB上,且與點(diǎn)B關(guān)于直線DO對稱,連接DB′,AD.

(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長;
(3)當(dāng)△AB′D為等腰三角形時(shí),求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y=的圖象上.若點(diǎn)B在反比例函數(shù)y=的圖象上,則k的值為( 。

A.-4
B.4
C.-2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=30°,BC的垂直平分線交AB于點(diǎn)E,垂足為D,CE平分∠ACB.若BE=2,則AE的長為(  )

A.
B.1
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的中線,tanB=,cosC=,AC=.求:

(1)BC的長;
(2)sin∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+ x+c與x軸交于A,B兩點(diǎn),與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣ x﹣4與x軸交于點(diǎn)D,點(diǎn)P是拋物線y=ax2+ x+c上的一動(dòng)點(diǎn),過點(diǎn)P作PE⊥x軸,垂足為E,交直線l于點(diǎn)F.

(1)試求該拋物線表達(dá)式;
(2)如圖(1),四邊形PCOF是平行四邊形,求P點(diǎn)的坐標(biāo);
(3)如圖(2),過點(diǎn)P作PH⊥y軸,垂足為H,連接AC.

①求證:△ACD是直角三角形;
②試問當(dāng)P點(diǎn)橫坐標(biāo)為何值時(shí),使得以點(diǎn)P、C、H為頂點(diǎn)的三角形與△ACD相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在東西方向的海岸線上有A、B兩個(gè)港口,甲貨船從A港沿北偏東60°的方向以4海里/小時(shí)的速度出發(fā),同時(shí)乙貨船從B港沿西北方向出發(fā),2小時(shí)后相遇在點(diǎn)P處,問乙貨船每小時(shí)航行海里.

查看答案和解析>>

同步練習(xí)冊答案