【題目】某校學(xué)生會正籌備一個“慶畢業(yè)”文藝匯演活動,現(xiàn)準備從4名(其中兩男兩女)節(jié)目主持候選人中,隨機選取兩人擔(dān)任節(jié)目主持人,請用列表法或畫樹狀圖求選出的兩名主持人“恰好為一男一女”的概率.
【答案】解:列表如下:
男 | 男 | 女 | 女 | |
男 | ﹣﹣﹣ | (男,男) | (女,男) | (女,男) |
男 | (男,男) | ﹣﹣﹣﹣ | (女,男) | (女,男) |
女 | (男,女) | (男,女) | ﹣﹣﹣ | (女,女) |
女 | (男,女) | (男,女) | (女,女) | ﹣﹣﹣ |
所有等可能的情況有12種,其中選出的兩名主持人“恰好為一男一女”的情況有8種,
則P(選出的兩名主持人“恰好為一男一女”)=
【解析】列表得出所有等可能的情況數(shù),找出選出的兩名主持人“恰好為一男一女”的情況數(shù),即可求出所求的概率.
【考點精析】根據(jù)題目的已知條件,利用列表法與樹狀圖法的相關(guān)知識可以得到問題的答案,需要掌握當一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.
(1)試說明DF是⊙O的切線
(2)若AC=3AE,求tanC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC與BD相交于點O,∠CAB=∠ACB,過點B作BE⊥AB交AC于點E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB=,求線段OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣經(jīng)過點A(1,0)和點B(5,0),與y軸交于點C.
(1)求此拋物線的解析式;
(2)以點A為圓心,作與直線BC相切的⊙A,求⊙A的半徑
(3)在直線BC上方的拋物線上任取一點P,連接PB,PC,請問:△PBC的面積是否存在最大值?若存在,求出這個最大值的此時點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個扇形滿足弧長的比等于它們半徑的比,則這稱這兩個扇形相似.如圖,如果扇形AOB與扇形A101B1是相似扇形,且半徑OA:O1A1=k(k為不等于0的常數(shù)).那么下面四個結(jié)論:①∠AOB=∠A101B1;②△AOB∽△A101B1;③=k;④扇形AOB與扇形A101B1的面積之比為k2 . 成立的個數(shù)為( 。
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,E是CD上的一點,連接BE交AC于O,連接DO并延長交BC于E.
(1)求證:△FOC≌△EOC;
(2)將此圖中的AD、BE分別延長交于點N,作EM∥BC交CN于M,再連接FM即得到圖2.
求證:①;②FD=FM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時,一個月工作25天.月工資底薪800元,另加計件工資.加工1件A型服裝計酬16元,加工1件B型服裝計酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件A型服裝和2件B型服裝需4小時,加工3件A型服裝和1件B型服裝需7小時.(工人月工資=底薪+計件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時?
(2)一段時間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運用所學(xué)知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,規(guī)定:拋物線y=a(x﹣h)2+k的伴隨直線為y=a(x﹣h)+k.例如:拋物線y=2(x+1)2﹣3的伴隨直線為y=2(x+1)﹣3,即y=2x﹣1.
(1)在上面規(guī)定下,拋物線y=(x+1)2﹣4的頂點坐標為 , 伴隨直線為 , 拋物線y=(x+1)2﹣4與其伴隨直線的交點坐標為和;
(2)如圖,頂點在第一象限的拋物線y=m(x﹣1)2﹣4m與其伴隨直線相交于點A,B(點A在點B的右側(cè)),與x軸交于點C,D.
①若∠CAB=90°,求m的值;
②如果點P(x,y)是直線BC上方拋物線上的一個動點,△PBC的面積記為S,當S取得最大值 時,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com