【題目】如圖,在四邊形ABCD中,對角線AC,BD交于點E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=.求CD的長和四邊形ABCD的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某高樓頂部有一信號發(fā)射塔,在矩形建筑物ABCD的A、C兩點測得該塔頂端F的仰角分別為45°和60°,矩形建筑物寬度AD=20m,高度DC=30m則信號發(fā)射塔頂端到地面的高度(即FG的長)為( )
A.(35 +55)m
B.(25 +45)m
C.(25 +75)m
D.(50+20 )m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB的垂直平分線DE交AC于D,垂足為E,若∠A=30°,CD=3.
(1)求∠BDC的度數(shù).
(2)求AC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB=AC,∠BAC=90°,直線AE是經(jīng)過點A的任一直線,BD⊥AE于D,CE⊥AE于E,若BD>CE,試解答:
(1)AD與CE的大小關(guān)系如何?請說明理由;
(2)若BD=5,CE=2,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點B,C是x軸上的兩個定點,∠ACB=90°,AC=BC,點A(l,3),點P是x軸上的一個動點,點E是AB的中點,在△PEF中,∠PEF=90°,PE=EF
(1)如圖1,當(dāng)點P與坐標(biāo)原點重合時:①求證△PCE≌△FBE;②求點F的坐標(biāo);
(2)如圖2,當(dāng)點P在線段CB上時,求證S△CPE=S△AEF
(3)如圖3,當(dāng)點P在線段CB的延長線時,若S△AEF=4S△PBE則此刻點F的坐標(biāo)為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料.
點M,N在數(shù)軸上分別表示數(shù)m和n,我們把m,n之差的絕對值叫做點M,N之間的距離,即MN=|m﹣n|.如圖,在數(shù)軸上,點A,B,O,C,D的位置如圖所示,則DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.
(1)OA= ,BD= ;
(2)|1﹣(﹣4)|表示哪兩點的距離?
(3)點P為數(shù)軸上一點,其表示的數(shù)為x,用含有x的式子表示BP= ,當(dāng)BP=4時,x= ;當(dāng)|x﹣3|+|x+2|的值最小時,x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖①,在△ABC 中,D、E 分別是 AB、AC 上的點,AB=AC,AD=AE,然后將△ADE 繞點 A 順時針旋轉(zhuǎn)一定角度,連接 BD,CE,得到圖②,將 BD、CE 分別延長至 M、N,使 DM= BD,EN=CE,得到圖③,請解答下列問題:
(1)在圖②中,BD 與 CE 的數(shù)量關(guān)系是 ;
(2)在圖③中,猜想 AM 與 AN 的數(shù)量關(guān)系,∠MAN 與∠BAC 的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司承接A、B兩種貨物運輸業(yè)務(wù),已知3月份A貨物運費單價為50元/噸,B貨物運費單價為30元/噸,共收取運費9500元;4月份由于工人工資上漲,運費單價上漲情況為:A貨物運費單價增加了40%,B貨物運費單價上漲到40元/噸;該物流公司4月承接的A種貨物和B種數(shù)量與3月份相同,4月份共收取運費13000元.試求該物流公司月運輸A、B兩種貨物各多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,△ABC是等腰直角三角形,∠BAC=90°,DE是經(jīng)過點A的直線,作BD⊥DE,CE⊥DE,
(1)求證:DE=BD+CE.
(2)如果是如圖2這個圖形,我們能得到什么結(jié)論?并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com