【題目】如圖,Rt△ABC中,AB=AC,∠BAC=90°,直線AE是經(jīng)過(guò)點(diǎn)A的任一直線,BD⊥AE于D,CE⊥AE于E,若BD>CE,試解答:
(1)AD與CE的大小關(guān)系如何?請(qǐng)說(shuō)明理由;
(2)若BD=5,CE=2,求DE的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過(guò)P作PE∥AB,通過(guò)平行線性質(zhì)來(lái)求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為_____度;
(2)問題遷移:如圖2,AB∥CD,點(diǎn)P在射線OM上運(yùn)動(dòng),記∠PAB=α,∠PCD=β,當(dāng)點(diǎn)P在B、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問∠APC與α、β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,如果點(diǎn)P在B、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)O、B、D三點(diǎn)不重合),請(qǐng)直接寫出∠APC與α、β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A的坐標(biāo)為(4,3)
(1)頂點(diǎn)C的坐標(biāo)為( , ),頂點(diǎn)B的坐標(biāo)為( , );
(2)現(xiàn)有動(dòng)點(diǎn)P、Q分別從C、A同時(shí)出發(fā),點(diǎn)P沿線段CB向終點(diǎn)B運(yùn)動(dòng),速度為每秒1個(gè)單位,點(diǎn)Q沿折線A→O→C向終點(diǎn)C運(yùn)動(dòng),速度為每秒k個(gè)單位,當(dāng)運(yùn)動(dòng)時(shí)間為2秒時(shí),以P、Q、C為頂點(diǎn)的三角形是等腰三角形,求此時(shí)k的值.
(3)若正方形OABC以每秒 個(gè)單位的速度沿射線AO下滑,直至頂點(diǎn)C落到x軸上時(shí)停止下滑.設(shè)正方形OABC在x軸下方部分的面積為S,求S關(guān)于滑行時(shí)間t的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB= ,BC= ,點(diǎn)E在對(duì)角線BD上,且BE=1.8,連接AE并延長(zhǎng)交DC于F,則 等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一個(gè)條件,某學(xué)習(xí)小組在討論這個(gè)條件時(shí)給出了如下幾種方案: ①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有( )
A. 1種 B. 2種 C. 3種 D. 4種
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,過(guò)點(diǎn)O作兩條射線OM,ON,且∠AOM=∠CON=90°.
(1)若OC平分∠AOM,求∠AOD的度數(shù);
(2)若∠1=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=.求CD的長(zhǎng)和四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=AC,現(xiàn)將△ABC折疊,使點(diǎn)A、B兩點(diǎn)重合,折痕所在的直線與直線AC的夾角為40°,則∠B的度數(shù)為______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)根據(jù)下列敘述填依據(jù):
已知:如圖①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度數(shù).
解:因?yàn)椤?/span>B+∠BFE=180°,
所以AB∥EF( ).
又因?yàn)?/span>AB∥CD,
所以CD∥EF( ).
所以∠CDF+∠DFE=180°( ).
所以∠B+∠BFD+∠D=∠B+∠BFE+∠DFE+∠D=360°.
(2)根據(jù)以上解答進(jìn)行探索:如圖②,AB∥EF,∠BDF與∠B,∠F有何數(shù)量關(guān)系?并說(shuō)明理由.
(3)如圖③④,AB∥EF,你能探索出圖③、圖④兩個(gè)圖形中,∠BDF與∠B,∠F的數(shù)量關(guān)系嗎?請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com