【題目】如圖,已知一次函數(shù)分別交、軸于、兩點,拋物線經(jīng)過、兩點,與軸的另一交點為.
(1)求、的值及點的坐標(biāo);
(2)動點從點出發(fā),以每秒1個單位長度的速度向點運動,過作軸的垂線交拋物線于點,交線段于點.設(shè)運動時間為秒.
①當(dāng)為何值時,線段長度最大,最大值是多少?(如圖1)
②過點作,垂足為,連結(jié),若與相似,求的值(如圖2)
【答案】(1)2,3,;(2)①時,長度最大,最大值為;②或
【解析】
(1)先求得坐標(biāo),把代入中,利用待定系數(shù)法求得系數(shù)得出解析式,進(jìn)一步求解點坐標(biāo)即可;
(2)①由題知、;將函數(shù)化為頂點式,即可得到最大值.)②將BF、DF用含有t的代數(shù)式表示,分類討論當(dāng)相似,則,即:,求得t,當(dāng)相似,則,即:,求得t即可.
解:(1)在中令,得,令,得,
∴,把代入中,得:,解得,
∴拋物線的解析式為,
∴點坐標(biāo)為;
(2)①由題知、;
∴
∴當(dāng)時,長度最大,最大值為.
②∵,
∴,
∴,
在中,,;在中,,;
∴
若相似,則,即:,
解得:(舍去),;
若相似,則,即:,解得:(舍去),;綜上,或時,與相似.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點D坐標(biāo)為(2,﹣1),且過點B(3,0),與y軸交于點C.
(1)求拋物線的解析式及點C的坐標(biāo);
(2)連結(jié)OD、CD、CB,CD交x軸于點E,求S△CEB:S△ODE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的邊AB的解析式為y=ax+2,頂點C,D在雙曲線y=(k>0)上.若AB=2AD,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中裝有大小、形狀完全相同的三個小球,上面分別標(biāo)有1,2,3三個數(shù)字.
(1)從中隨機摸出一個球,求這個球上數(shù)字是奇數(shù)的概率是 ;
(2)從中先隨機摸出一個球記下球上數(shù)字,然后放回洗勻,接著再隨機摸出一個,求這兩個球上的數(shù)都是奇數(shù)的概率(用列表或樹狀圖方法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與直線y=x+1相交于A(﹣1,0),B(4,m)兩點,且拋物線經(jīng)過點C(5,0).
(1)求拋物線的解析式.
(2)點P是直線上方的拋物線上的一個動點,求△ABP的面積最大時的P點坐標(biāo).
(3)若點P是拋物線上的一個動點(不與點A點B重合),過點P作直線PD⊥x軸于點D,交直線AB于點E.當(dāng)PE=2ED時,求P點坐標(biāo);
(4)設(shè)拋物線與y軸交于點F,在拋物線的第一象限內(nèi),是否存在一點M,使得AM被FC平分?若存在,請求出點M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中 5 個黑球, 從袋中隨機摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋 中,攪勻后,再繼續(xù)摸出一球.以下是利用計算機模擬的摸球試驗次數(shù)與摸出黑球次數(shù)的列表:
摸球試驗次數(shù) | 100 | 1000 | 5000 | 10000 | 50000 | 100000 |
摸出黑球次數(shù) | 46 | 487 | 2506 | 5008 | 24996 | 50007 |
根據(jù)列表,可以估計出 m 的值是( )
A. 5 B. 10 C. 15 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南洞庭大橋是南益高速公路上的重要橋梁,小芳同學(xué)在校外實踐活動中對此開展測量活動.如圖,在橋外一點A測得大橋主架與水面的交匯點C的俯角為α,大橋主架的頂端D的仰角為β,已知測量點與大橋主架的水平距離AB=a,則此時大橋主架頂端離水面的高CD為( )
A.asinα+asinβB.acosα+acosβC.atanα+atanβD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com