【題目】綜合與探究
問題情境
在綜合實踐課上,老師讓同學們探究“平面直角坐標系中的旋轉問題”.如圖,在平面直角坐標系中,四邊形是矩形,點,點,點.
操作發(fā)現(xiàn)
以點為中心,順時針旋轉矩形,得到矩形,點,,的對應點分別為,,.
(1)如圖①,當點落在邊上時,求點的坐標;
繼續(xù)探究
(2)如圖②,當點落在線段上時,與交于點.
①求證;
②求點的坐標.
拓展探究
(3)如圖①,點是軸上任意一點,點是平面內任意一點,是否存在點使以、、、為頂點的四邊形是菱形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
【答案】(1);(2)①見解析;②;(3)存在,,,,
【解析】
(1)根據(jù)矩形的性質得到OB=AC=3,OA=BC=5,∠C=90°,根據(jù)旋轉變換的性質得到AD=OA=5,根據(jù)勾股定理求出CD,得到點D的坐標;
(2)①根據(jù)旋轉變換的性質得到OA=DA,∠AOB=∠ADE=90°,利用HL定理證明△ADB≌△AOB;
②根據(jù)全等三角形的性質得到BD=BO=AC,根據(jù)△BDH≌△ACH,得到DH=CH,根據(jù)勾股定理求出CH,得到點H的坐標;
(3)分四種情況進行討論:①當四邊形ADNM為菱形,且點N在點D左側時;②當四邊形ADNM為菱形,且點N在點D右側時;③當四邊形ADMN為菱形時,④當四邊形ANDM為菱形時,根據(jù)菱形的性質即可求解.
(1)如圖①中,
∵,,
∴,,
∵四邊形是矩形,
∴,,,
∵矩形是由矩形旋轉得到,
∴,
在中,,
∴,
∴
(2)①如圖②中,
由四邊形是矩形,得到,
點在線段上,
,
由(1)可知,,又,,
∴
②∵,
∴,
又在矩形中,,
∴,
∴,
∴,設,則,
在中,∵,
∴,
∴,
∴,
∴.
(3)存在,
①當四邊形ADNM為菱形,且點N在點D左側時,
∵AD=5,
∴ND=AD=AM=5,
又BD=1,
∴BN=5-1=4,
∵點M在x軸上,
∴DN∥AM,
∴N(-4,3)
②當四邊形ADNM為菱形,且點N在點D右側時,
∵AD=5,
∴ND=AD=AM=5,
又BD=1,
∴BN=5+1=6,
∵點M在x軸上,
∴DN∥AM,
∴N(6,3)
③當四邊形ADMN為菱形時,
∵點M在x軸上,
∴點D與點N關于x軸對稱,
∵D(1,3),
∴N(1,-3)
④當四邊形ANDM為菱形時,則MN⊥AD,
∵AM∥DC,點M在x軸上,
∴點N在BC上,DN=AN,
設CN=a,則DN=AN=4-a,
∴,即,解得:a=,
∴BN=,
故
綜上所述:,,,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在x軸和y軸上,點B的坐標為.雙曲線的圖象經過BC的中點D,且與AB交于點E,連接DE.
(1)求k的值及點E的坐標;
(2)若點F是OC邊上一點,且△FBC∽△DEB,求直線FB的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=ax2-2ax-1(a是常數(shù),a≠0),下列結論正確的是( )
A. 當a=1時,函數(shù)圖象過點(-1,1)
B. 當a=-2時,函數(shù)圖象與x軸沒有交點
C. 若a>0,則當x≥1時,y隨x的增大而減小
D. 若a<0,則當x≤1時,y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相較于點H,給出下列結論:①BE=2AE;②△DFP∽△BPH;③DP2=PH·PC;④若AB=2,則S△BPD=;其中正確的是( )
A.①②③④B.②③C.①②④D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AD∥BC,∠A=90°,BD=DC,AB=6,AD=8,點P、Q分別為BC、AD上的動點,連接PQ,與BD相交于點O.
(1)當∠1=∠2時,求證:∠DOQ=∠DPC;
(2)當(1)的條件下,求證:DQ·PC=BD·DO;
(3)如果點P由點B向點C移動,每秒移動2個單位,同時點Q由點D向點A移動,每秒移動1個單位,設移動的時間為t秒,是否存在某一時刻,使得△BOP為直角三角形,如果存在,請直接寫出t的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=50°,P是BC邊上一點,將△ABP繞點A逆時針旋轉50°,點P旋轉后的對應點為點P′.
(1)畫出旋轉后的三角形;
(2)連接PP′,若∠BAP=20°,求∠PP′C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2+2x+2k﹣4=0有兩個不相等的實數(shù)根.
(1)求k的取值范圍:
(2)若k為正整數(shù),且該方程的根都是整數(shù),求k的值及該方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
(1)當二次函數(shù)的圖象經過坐標原點O(0,0)時,求二次函數(shù)的解析式;
(2)如圖,當m=2時,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標;
(3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com