【題目】已知一次函數(shù)y=2m-3x+m+1經(jīng)過點A1,4

1)求m的值;

2)畫出此一次函數(shù)的圖象;

3)若一次函數(shù)交y軸于點B,求△OAB的面積.

【答案】1m=2;(2)見解析;(3

【解析】

1)把點A14)代入一次函數(shù)y=2m-3x+m+1即可求出m的值;

2)已知點A14),再令x=0y=3,根據(jù)兩點確定一條直線,畫出函數(shù)圖象即可;

3)過點AACy軸于點C,求得AC=1,y=x+3y軸交于點B0,3),求得OB=3,根據(jù)△OAB的面積即可求得;

解:

1)∵一次函數(shù)y=2m-3x+m+1經(jīng)過點A1,4),

4=2m3+m+1,

解得:m=2

∴一次函數(shù)的解析式為:y=x+3;

2)如圖:

3)如圖:過點AACy軸于點C

AC=1,

y=x+3y軸的交點為:令x=0,求得y=3,

y=x+3y軸的交點交于點B0,3),

OB=3

∴△OAB的面積;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點,被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學想利用一些測量工具和所學的幾何知識測量小雁塔的高度,由于觀測點與小雁塔底部間的距離不易測量,因此經(jīng)過研究需要進行兩次測量,于是在陽光下,他們首先利用影長進行測量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測得此時木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點F,使得A、C、F三點在同一直線上,并測得DF=2.5米.已知圖中所有點均在同一平面內(nèi),木棒高CD=1.72米,ABBF,CDBF,試根據(jù)以上測量數(shù)據(jù),求小雁塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,AB、AC是圓O的兩條弦,AB=AC,過圓心O作OHAC于點H.

(1)如圖1,求證:B=C;

(2)如圖2,當H、O、B三點在一條直線上時,求BAC的度數(shù);

(3)如圖3,在(2)的條件下,點E為劣弧BC上一點,CE=6,CH=7,連接BC、OE交于點D,求BE的長和的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高科技發(fā)展公司投資500萬元,成功研制出一種市場需求量較大的高科技替代產(chǎn)品,并投入資金1500萬元作為固定投資,已知生產(chǎn)每件產(chǎn)品的成本是40元.在銷售過程中發(fā)現(xiàn):當銷售單價定為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件,設銷售單價為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額一生產(chǎn)成本投資)為z(萬元).

(1)試寫出y與x之間的函數(shù)關系式(不寫x的取值范圍);

(2)試寫出z與x之間的函數(shù)關系式(不寫x的取值范圍);

3)公司計劃,在第一年按年獲利最大確定銷售單價進行銷售;到第二年年底獲利不低于1130萬元,請借助函數(shù)的大致圖象說明:第二年的銷售單價x(元)應確定在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校組織團員舉行申奧成功宣傳活動,從學校騎車出發(fā),先上坡到達A地后,宣傳8分鐘;然后下坡到B地宣傳8分鐘返回,行程情況如圖.若返回時,上、下坡速度仍保持不變,在A地仍要宣傳8分鐘,那么他們從B地返回學校用的時間是(

A. 45.2分鐘 B. 48分鐘 C. 46分鐘 D. 33分鐘

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠C=90°,AC=6BC=8,DAB的中點,E、F分別是ACBC上兩點,且EDFD

1)如圖1,若EAC中點,則BF=______EF=______,AE2+BF2______EF2(填“>,<=”);

2)如圖2,若點EAC邊上任意一點,AE2+BF2_____EF2(填“>,<=”),請說明理由;

3)若點ECA延長上,(2)中三條線段之間的關系是否成立?請畫圖說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD和正方形BEFG中,點A,B,E在同一條直線上,連接DF,且P是線段DF的中點,連接PG,PC.

(1)如圖1中,PGPC的位置關系是   ,數(shù)量關系是   

(2)如圖2將條件正方形ABCD和正方形BEFG”改為矩形ABCD和矩形BEFG”其它條件不變,求證:PG=PC;

(3)如圖3,若將條件正方形ABCD和正方形BEFG”改為菱形ABCD和菱形BEFG”,點A,B,E在同一條直線上,連接DF,P是線段DF的中點,連接PG、PC,且∠ABC=∠BEF=60°,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點AABx軸,垂足為點A,過點CCBy軸,垂足為點C,兩條垂線相交于點B.

(1)線段AB,BC,AC的長分別為AB=   ,BC=   ,AC=   ;

(2)折疊圖1中的ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DEAB于點D,交AC于點E,連接CD,如圖2.

請從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長;

②在y軸上,是否存在點P,使得APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.

B:①求線段DE的長;

②在坐標平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(a,0),B(0,b),且a、b滿足(a﹣2)2+=0.

(1)求直線AB的解析式;

(2)若點M為直線y=mx上一點,且ABM是等腰直角三角形,求m值;

(3)過A點的直線y=kx﹣2k交y軸于負半軸于P,N點的橫坐標為﹣1,過N點的直線y=x﹣交AP于點M,試證明的值為定值.

查看答案和解析>>

同步練習冊答案