【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

18000

第二周

4

10

31000

(1)求A,B兩種型號的凈水器的銷售單價;

(2)若電器公司準備用不多于54000元的金額在采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?

(3)在(2)的條件下,公司銷售完這30臺凈水器能否實現(xiàn)利潤為12800元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

【答案】(1)A、B兩種凈水器的銷售單價分別為2500元、2100;(2)超市最多采購A種型號凈水器10臺時,采購金額不多于54000;(3)采購A種型號凈水器8臺,采購B種型號凈水器22臺,公司能實現(xiàn)利潤12800元的目標.

【解析】設(shè)A、B兩種凈水器的銷售單價分別為x元,y元,

由題意得:

答:A、B兩種凈水器的銷售單價分別為2500元,2100元.

設(shè)采購A種型號的凈水器a臺,則B種凈水器(30—a)臺.

由題意得:2000a+1700(30-a)

解得:

故超市最多采購A種型號凈水器10臺,采購金額不多于54000元.

由題意得:

解得a=8,

故采購A種型號凈水器8臺,B種型號凈水器22臺,公司能實現(xiàn)12800元的目標.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設(shè)計師提供了樓頂停車場的設(shè)計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:數(shù)和形是數(shù)學的兩個主要研究對象,我們經(jīng)常運用數(shù)形結(jié)合,樹形轉(zhuǎn)化的方法解決一些數(shù)學問題,小明在求同一坐標軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標系內(nèi)任意兩點P1x1,y1),P2x2,y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2=,他還利用圖2證明了線段P1P2的中點Pxy),P的坐標公式:x=,y=

啟發(fā)應用:

如圖3:在平面直角坐標系中,已知A8,0),B06),C17),M經(jīng)過原點O及點AB,

1)求⊙M的半徑及圓心M的坐標;

2)判斷點C與⊙M的位置關(guān)系,并說明理由;

3)若∠BOA的平分線交AB于點N,交⊙M于點E,分別求出OE的表達式y1,過點M的反比例函數(shù)的表達式y2,并根據(jù)圖象,當y2y10時,請直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在正方形ABCD中,點EAB的中點,點P是對角線AC上一動點。設(shè)PC的長度為xPEPB的長度和為y,圖②是y關(guān)于x的函數(shù)圖象,則圖象上最低點H的坐標為(

A. (1,2)B. ()C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON=90°,矩形ABCD的頂點C、D分別在邊ON,OM上滑動,AB=9,BC=6,在滑動過程中,點A到點O的最大距離為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關(guān)系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫和時間的關(guān)系如下圖所示,回答下列問題:

(1)分別求出當0≤x≤88<x≤a時,yx之間的關(guān)系式;

(2)求出圖中a的值;

(3)下表是該小學的作息時間,若同學們希望在上午第一節(jié)下課8:20時能喝到不超過40℃的開水,已知第一節(jié)下課前無人接水,請直接寫出生活委員應該在什么時間或時間段接通飲水機電源.(不可以用上課時間接通飲水機電源)

時間

節(jié)次

7:20

到校

7:45~8:20

第一節(jié)

8:30~9:05

第二節(jié)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】的度數(shù)是的度數(shù)的k倍,則規(guī)定k倍角.

1)若∠M=21°17',則∠M5倍角的度數(shù)為 ;

2)如圖1,OB是∠AOC的平分線,OD是∠COE的平分線,若∠AOC=COE,請直接寫出圖中∠AOB的所有3倍角;

3)如圖2,若∠AOC是∠AOB5倍角,∠COD是∠AOB3倍角,且∠AOC和∠BOD互為補角,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC,ACB的平分線相交于F,過點FDEBC,AB于點D,AC于點E

1)請你寫出圖中所有的等腰三角形

2)請寫出BD,CE,DE之間的數(shù)量關(guān)系

3)并對第(2)問中BD,CE,DE之間的數(shù)量關(guān)系給予證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,PABC中線AD上一點,APPD=21延長BP、CP分別交AC、AB于點E、FEFAD于點Q.(1PQ=EQ;(2FPPC=ECAE;(3FQBD=PQPD;(4SFPQSDCP=SPEFSPBC上述結(jié)論中,正確的有_________

查看答案和解析>>

同步練習冊答案