【題目】在平面直角坐標(biāo)系xOy中,若點P和點關(guān)于y軸對稱,點和點關(guān)于直線l對稱,則稱點是點P關(guān)于y軸,直線l的二次對稱點.

如圖1,點

若點B是點A關(guān)于y軸,直線的二次對稱點,則點B的坐標(biāo)為______;

若點是點A關(guān)于y軸,直線的二次對稱點,則a的值為______;

若點是點A關(guān)于y軸,直線的二次對稱點,則直線的表達式為______;

如圖2的半徑為上存在點M,使得點是點M關(guān)于y軸,直線的二次對稱點,且點在射線上,b的取值范圍是______

x軸上的動點,的半徑為2,若上存在點N,使得點是點N關(guān)于y軸,直線的二次對稱點,且點y軸上,求t的取值范圍.

【答案】(1)①B(3,0);②a=-2;③y=-x+2;(2);(3).

【解析】

根據(jù)二次對稱點的定義,分別畫出圖形,即可解決問題.

根據(jù)二次對稱點的定義,畫出圖形,求出b的最大值以及最小值即可解決問題.

如圖6中,設(shè)點E關(guān)于y軸的對稱點為,關(guān)于直線的對稱點為,易知當(dāng)點N上運動時,點上運動,由此可見當(dāng)y軸相切或相交時滿足條件想辦法求出點的坐標(biāo)即可解決問題.

解:如圖1中,點關(guān)于y軸的對稱點,關(guān)于直線的對稱點

如圖2中,由題意,,、C關(guān)于直線對稱,


如圖3中,,
直線的解析式為,線段的中垂線的解析式為,
直線的解析式為

故答案分別為
如圖4中,

由題意,由此可知,當(dāng)的值最大時,可得b的最大值,
直線的解析式為
,
,易知,時,的值最大,最大值為2,
的最大值為1,
如圖5中,易知當(dāng)點M在x軸的正半軸上時,可得b的最小值,最小值為,

綜上所述,滿足條件的b取值范圍為
故答案為

如圖6中,設(shè)點E關(guān)于y軸的對稱點為,關(guān)于直線的對稱點為,易知當(dāng)點N在上運動時,點上運動,由此可見當(dāng)與y軸相切或相交時滿足條件.

連接交直線于K,易知直線的解析式為
解得,
,
,
,
當(dāng)與y軸相切時,,解得,
綜上所述,滿足條件的t的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC45°,ADBCD,點EAD上,∠BEC135°,若BC5,SECA2,則BD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)解析式為y=(m-2)

1)若函數(shù)為正比例函數(shù),試說明函數(shù)yx增大而減小

2)若函數(shù)為二次函數(shù),寫出函數(shù)解析式,并寫出開口方向

3)若函數(shù)為反比例函數(shù),寫出函數(shù)解析式,并說明函數(shù)在第幾象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備投資開發(fā)A、B兩種新產(chǎn)品通過市場調(diào)研發(fā)現(xiàn)如果單獨投資A種產(chǎn)品則所獲利潤yA(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系yA=kx;如果單獨投資B種產(chǎn)品則所獲利潤yB(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系yB=ax2+bx.根據(jù)公司信息部的報告,yA、yB(萬元)與投資金額x(萬元)的部分對應(yīng)值(如下表)

(1)求正比例函數(shù)和二次函數(shù)的解析式;

(2)如果公司準(zhǔn)備投資20萬元同時開發(fā)A、B兩種新產(chǎn)品,請你設(shè)計一個能獲得最大利潤的投資方案并求出按此方案能獲得的最大利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,直線y軸交于點A,與雙曲線交于點

1)求點B的坐標(biāo)及k的值;

2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若的面積為6,求直線CD的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點DAC上,DEAB于點E,且CDDE.點FBC上,連接EF,AF,若∠CEF45°,∠B2CAF,BF2,則AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=4,AD=6,∠ABC的平分線交AD于點E,交CD的延長線于點F.

(1)求DF的長;

(2)點H為CD的中點,連接AH交BF于點G,點G是BF的中點嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于兩點.

求:(1)反比例函數(shù)關(guān)系式;

2n的值;

3)一次函數(shù)關(guān)系式;

4)根據(jù)圖像回答,當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時,x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案