【題目】如圖,ABC中,AB=13cm,BC=10cm,ADBC的中線,且AD=12cm

(1)求AC的長;

(2)求ABC的面積.

【答案】(1)AC= 13cm;(2)60cm2

【解析】

1)根據(jù)已知及勾股定理的逆定理可得△ABDADC是直角三角形從而不難求得AC的長

2)先根據(jù)三線合一可知AD是高,由三角形面積公式即可得到結論

1DBC的中點BC=10cm,DC=BD=5cm

BD2+AD2=144+25=169,AB2=169,BD2+AD2=AB2,∴△ABD是直角三角形,且∠ADB=90°,∴△ADC也是直角三角形AC是斜邊,AC2=AD2+DC2=AB2,∴AC=13(cm

2AB=AC=13,BD=CDADBC,SABC=BCAD=×10×12=60

ABC的面積是60cm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)的最大值為4,且拋物線過點( ,﹣ ),點P(t,0)是x軸上的動點,拋物線與y軸交點為C,頂點為D.
(1)求該二次函數(shù)的解析式,及頂點D的坐標;
(2)求|PC﹣PD|的最大值及對應的點P的坐標;
(3)設Q(0,2t)是y軸上的動點,若線段PQ與函數(shù)y=a|x|2﹣2a|x|+c的圖象只有一個公共點,求t的取值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級體育模擬測試中,六名男生引體向上的成績?nèi)缦拢▎挝唬簜):10、6、9、11、8、10,下列關于這組數(shù)據(jù)描述正確的是(
A.極差是6
B.眾數(shù)是10
C.平均數(shù)是9.5
D.方差是16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點A,B分別在x軸,y軸上,點A的坐標為(﹣1,0),∠ABO=30°,線段PQ的端點P從點O出發(fā),沿△OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在x軸的非負半軸上運動,如果PQ= ,那么當點P運動一周時,點Q運動的總路程為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0),B(0,﹣ ),C(2,0),其對稱軸與x軸交于點D

(1)求二次函數(shù)的表達式及其頂點坐標;
(2)若P為y軸上的一個動點,連接PD,則 PB+PD的最小值為;
(3)M(x,t)為拋物線對稱軸上一動點
①若平面內(nèi)存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(2y﹣z):(z+2x):y=1:5:2,則(3y﹣z):(2z﹣x):(x+3y)=( 。
A.1:5:7
B.3:5:7
C.3:5:8
D.2:5:8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A、B的坐標分別為(8,0)、(0,2 ),C是AB的中點,過點C作y軸的垂線,垂足為D,動點P從點D出發(fā),沿DC向點C勻速運動,過點P作x軸的垂線,垂足為E,連接BP、EC.當BP所在直線與EC所在直線第一次垂直時,點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于坐標平面內(nèi)的點,現(xiàn)將該點向右平移1個單位,再向上平移2的單位,這種點的運動稱為點A的斜平移,如點P(2,3)經(jīng)1次斜平移后的點的坐標為(3,5),已知點A的坐標為(1,0).

(1)分別寫出點A經(jīng)1次,2次斜平移后得到的點的坐標.
(2)如圖,點M是直線l上的一點,點A關于點M的對稱點的點B,點B關于直線l的對稱軸為點C.
①若A、B、C三點不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點B由點A經(jīng)n次斜平移后得到,且點C的坐標為(7,6),求出點B的坐標及n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一張長9cm,寬3cm的矩形紙片,如圖所示,把它折疊使D點與B點重合,你能求出EF的長嗎?

查看答案和解析>>

同步練習冊答案