【題目】如圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0),B(0,﹣ ),C(2,0),其對稱軸與x軸交于點D

(1)求二次函數(shù)的表達式及其頂點坐標;
(2)若P為y軸上的一個動點,連接PD,則 PB+PD的最小值為;
(3)M(x,t)為拋物線對稱軸上一動點
①若平面內(nèi)存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

【答案】
(1)

解:由題意 解得 ,

∴拋物線解析式為y= x2 x﹣ ,

∵y= x2 x﹣ = (x﹣ 2 ,

∴頂點坐標( ,﹣


(2)
(3)

① 5

②解:如圖,RT△AOB中,∵tan∠ABO= =

∴∠ABO=30°,

作AB的中垂線與y軸交于點E,連接EA,則∠AEB=120°,

以E為圓心,EB為半徑作圓,與拋物線對稱軸交于點F、G.

則∠AFB=∠AGB=60°,從而線段FG上的點滿足題意,

∵EB= = ,

∴OE=OB﹣EB= ,

∵F( ,t),EF2=EB2

∴( 2+(t+ 2=( 2,

解得t=

故F( , ),G( , ),

∴t的取值范圍 ≤t≤


【解析】【解析】解:(2)如圖1中,連接AB,作DH⊥AB于H,交OB于P,
此時 PB+PD最。
理由:∵OA=1,OB= ,
∴tan∠ABO= = ,
∴∠ABO=30°,
∴PH= PB,
PB+OD=PH+PD=DH,
∴此時 PB+PD最短(垂線段最短).
在RT△ADH中,∵∠AHD=90°,AD= ,∠HAD=60°,
∴sin60°= ,
∴DH= ,
PB+PD的最小值為
所以答案是
(3)①以A為圓心AB為半徑畫弧與對稱軸有兩個交點,
以B為圓心AB為半徑畫弧與對稱軸也有兩個交點,
線段AB的垂直平分線與對稱軸有一個交點,
所以滿足條件的點M有5個,即滿足條件的點N也有5個,
所以答案是5.
(1)利用待定系數(shù)法轉(zhuǎn)化為解方程組解決問題.(2)如圖1中,連接AB,作DH⊥AB于H,交OB于P,此時 PB+PD最。钚≈稻褪蔷段DH,求出DH即可.(3)①先在對稱軸上尋找滿足△ABM是等腰三角形的點M,由此即可解決問題.②作AB的中垂線與y軸交于點E,連接EA,則∠AEB=120°,以E為圓心,EB為半徑作圓,與拋物線對稱軸交于點F、G.則∠AFB=∠AGB=60°,從而線段FG上的點滿足題意,求出F、G的坐標即可解決問題.本題考查二次函數(shù)綜合題、銳角三角函數(shù)、最短問題、圓等知識,解題的關鍵是掌握待定系數(shù)法確定函數(shù)解析式,學會利用垂線段最短解決實際問題中的最短問題,學會添加輔助線,構造圓解決角度問題,屬于中考壓軸題.
【考點精析】根據(jù)題目的已知條件,利用垂線段最短和銳角三角函數(shù)的增減性的相關知識可以得到問題的答案,需要掌握連接直線外一點與直線上各點的所有線段中,垂線段最短;現(xiàn)實生活中開溝引水,牽牛喝水都是“垂線段最短”性質(zhì)的應用;當角度在0°~90°之間變化時:(1)正弦值隨著角度的增大(或減小)而增大(或減。2)余弦值隨著角度的增大(或減。┒鴾p。ɑ蛟龃螅3)正切值隨著角度的增大(或減小)而增大(或減。4)余切值隨著角度的增大(或減。┒鴾p小(或增大).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2﹣6x+c與x軸交于點A(﹣5,0)、B(﹣1,0),與y軸交于點C(0,﹣5),點P是拋物線上的動點,連接PA、PC,PC與x軸交于點D.

(1)求該拋物線所對應的函數(shù)解析式;
(2)若點P的坐標為(﹣2,3),請求出此時△APC的面積;
(3)過點P作y軸的平行線交x軸于點H,交直線AC于點E,如圖2.
①若∠APE=∠CPE,求證: ;
②△APE能否為等腰三角形?若能,請求出此時點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】表為甲班55人某次數(shù)學小考成績的統(tǒng)計結果,關于甲班男、女生此次小考成績的統(tǒng)計量,下列敘述何者正確?( 。

成績(分)

50

70

90

男生(人)

10

10

10

女生(人)

5

15

5

合計(人)

15

25

15


A.男生成績的四分位距大于女生成績的四分位距
B.男生成績的四分位距小于女生成績的四分位距
C.男生成績的平均數(shù)大于女生成績的平均數(shù)
D.男生成績的平均數(shù)小于女生成績的平均數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=﹣x2﹣2x+3與x軸交于A、B兩點,將這條拋物線的頂點記為C,連接AC、BC,則tan∠CAB的值為( )
A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:( 1+(sin60°﹣1)0﹣2cos30°+| ﹣1|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=13cm,BC=10cm,ADBC的中線,且AD=12cm

(1)求AC的長;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,矩形OABC的頂點O在坐標原點,邊OA在x軸上,OC在y軸上,如果矩形OA′B′C′與矩形OABC關于點O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點B′的坐標是( )

A.(-2,3)
B.(2,-3)
C.(3,-2)或(-2,3)
D.(-2,3)或(2,-3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD繞點A逆時針旋轉(zhuǎn)30°,得到平行四邊形AB′C′D′(點B′與點B是對應點,點C′與點C是對應點,點D′與點D是對應點),點B′恰好落在BC邊上,則∠C=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果10b=n,那么b為n的勞格數(shù),記為b=d(n),由定義可知:10b=n與b=d(n)所表示的b、n兩個量之間的同一關系.
(1)根據(jù)勞格數(shù)的定義,填空:d(10)= , d(102)=;
(2)勞格數(shù)有如下運算性質(zhì): 若m、n為正數(shù),則d(mn)=d(m)+d(n),d( )=d(m)﹣d(n).
根據(jù)運算性質(zhì),填空:
=(a為正數(shù)),若d(2)=0.3010,則d(4)= , d(5)= , d(0.08)=;
(3)如表中與數(shù)x對應的勞格數(shù)d(x)有且只有兩個是錯誤的,請找出錯誤的勞格數(shù),說明理由并改正.

x

1.5

3

5

6

8

9

12

27

d(x)

3a﹣b+c

2a﹣b

a+c

1+a﹣b﹣c

3﹣3a﹣3c

4a﹣2b

3﹣b﹣2c

6a﹣3b

查看答案和解析>>

同步練習冊答案