【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的一邊OAx軸正半軸上,OB2,∠C120°.將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至第四象限OA′B′C′的位置,則點(diǎn)B′的坐標(biāo)為(

A. 2, B. 2,﹣ C. , D. ,﹣

【答案】D

【解析】

BHx軸于H點(diǎn),連結(jié)OB,根據(jù)菱形的性質(zhì)得到∠AOB=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BOB=75°,OB=OB=2,則∠AOB=BOB-AOB=45°,所以△OBH為等腰直角三角形,根據(jù)等腰直角三角形性質(zhì)可計(jì)算得OH=BH=,然后根據(jù)第四象限內(nèi)點(diǎn)的坐標(biāo)特征即可得出B′點(diǎn)的坐標(biāo).

BHx軸于H點(diǎn),連結(jié)OB,如圖,

∵四邊形OABC為菱形,

∴∠AOC=180°-C=60°,OB平分∠AOC,

∴∠AOB=30°,

∵菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至第四象限OABC′的位置,

∴∠BOB=75°,OB=OB=2

∴∠AOB=BOB-AOB=45°,

∴△OBH為等腰直角三角形,

OH=BH=OB=

∵點(diǎn)B′在第四象限,

∴點(diǎn)B′的坐標(biāo)為(,-).

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)BC、D都在⊙O上,過(guò)點(diǎn)CACBDOB延長(zhǎng)線于點(diǎn)A,連接CD,且∠CDB=OBD=30°DB=cm

1)求證:AC是⊙O的切線;

2求由弦CDBD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)yx>0)的圖象交于點(diǎn)Am,2),B(2,n).過(guò)點(diǎn)AAC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使ODOC,且ACD的面積是6,連接BC

(1)求mk,n的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:6x4-35x3+62x2-35x+6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,過(guò)A作半圓的切線,與半圓相切于F點(diǎn),與DC相交于E點(diǎn),則△ADE的面積為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問題

(1)本次調(diào)查的學(xué)生有多少人?

(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;

(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是_____;

(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn) (不與B,C重合),∠ADE=∠B=α,DEAC于點(diǎn)E,且 .下列結(jié)論: ①△ADE∽△ACD;當(dāng)BD=6時(shí),△ABD△DCE全等;③△DCE為直角三角形時(shí),BD8④CD2=CECA.其中正確的結(jié)論是________(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB為⊙O的直徑,PC切⊙O于C交AB的延長(zhǎng)線于點(diǎn)P,∠CAP=35°,那么∠CPO的度數(shù)等于(   )

A. 15° B. 20° C. 25° D. 30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鳳城商場(chǎng)經(jīng)銷一種高檔水果,售價(jià)為每千克50

1)連續(xù)兩次降價(jià)后售價(jià)為每千克32元,若每次下降的百分率相同.求平均下降的百分率;

2)已知這種水果的進(jìn)價(jià)為每千克40元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),若每千克漲價(jià)1元,日銷售量將減少20千克,每千克應(yīng)漲價(jià)多少元才能使每天獲得的利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案