【題目】如圖,在邊長為1的正方形ABCD中,動(dòng)點(diǎn)EF分別在邊AB,CD上,將正方形ABCD沿直線EF折疊,使點(diǎn)B的對應(yīng)點(diǎn)M始終落在邊AD上(點(diǎn)M不與點(diǎn)AD重合),點(diǎn)C落在點(diǎn)N處,MNCD交于點(diǎn)P,設(shè)BE=x

1)當(dāng)AM=時(shí),求x的值;

2)隨著點(diǎn)M在邊AD上位置的變化,ΔPDM的周長是否發(fā)生變化?如變化,請說明理由;如不變,請求出該定值;

3)若AM=a,四邊形BEFC的面積為S,求Sa之間的函數(shù)表達(dá)式。

【答案】(1);(2)ΔPDM的周長不變,為定值2;(3S=

【解析】

1)利用勾股定理構(gòu)建方程,即可解決問題;(2ΔPDM的周長不變,為定值2,連接BM,BP,過BBHMN于點(diǎn)H,根據(jù)折疊性質(zhì)、等邊對等角、兩直線平行內(nèi)錯(cuò)角相等證明,得到AM=HM,AB=BH 再證明,得到HP=CP,所以ΔPDM的周長=MD+DP+MP=MD+DP+HM+HP=MD+DP+AM+CP=AD+DC=2.

(3) F點(diǎn)作FQAB,連接BM,EM=BE=x,由折疊性質(zhì)證明,所以AM=QE,在RtΔAEM中,由勾股定理得:,即,所以,又因?yàn)?/span>FQAB,四邊形ABCD是正方形,可得CF=BQ=BE-QE=,再根據(jù)梯形面積公式即可解答.

:1)由題意可知,BE=EM=xAE=1-x,在RtΔAEM

,解得.

2ΔPDM的周長不變,為定值2

如圖1,連接BMBP,過BBHMN于點(diǎn)H

BE=EM

∴∠EBM=EMB

又∵∠EBC=EMN=90°

∴∠MBC=BMN

ADBC

∴∠AMB=MBC=BMN

RtΔABMRtΔHBM

AM=HM,AB=BH

RtΔBHPRtΔBCP

HP=CP.

又∵ΔPDM的周長=MD+DP+MP=MD+DP+HM+HP=MD+DP+AM+CP=AD+DC=2.

ΔPDM周長為定值2.

3)如備用圖,過F點(diǎn)作FQAB,連接BM

由折疊可知,∠BEF=MEF,BMEFEM=BE=x

∴∠QEF=EMB=EBM

RtΔABMRtΔQFE

AM=QE

RtΔAEM中,

FQAB,四邊形ABCD是正方形

CF=BQ=BE-QE=

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在三角形中,于點(diǎn),于點(diǎn),交于點(diǎn),則____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩條直線AB,CD相交于點(diǎn)O,且,射線OMOB開始繞O點(diǎn)逆時(shí)針方向旋轉(zhuǎn),速度為,射線ON同時(shí)從OD開始繞O點(diǎn)順時(shí)針方向旋轉(zhuǎn),速度為.兩條射線OMON同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t.(本題出現(xiàn)的角均小于平角)

1)當(dāng)時(shí),若.試求出的值;

2)當(dāng)時(shí),探究的值,問:t滿足怎樣的條件是定值;滿足怎樣的條件不是定值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠有新、舊兩臺機(jī)器,上半年,新機(jī)器平均每天比舊機(jī)器多生產(chǎn)50件產(chǎn)品,新機(jī)器生產(chǎn)600件產(chǎn)品所用的時(shí)間與舊機(jī)器生產(chǎn)450件產(chǎn)品所用的時(shí)間相同.

1)求上半年新、舊機(jī)器日均產(chǎn)品數(shù);

2)下半年,新機(jī)器提高了生產(chǎn)效率,而舊機(jī)器由于不斷損耗,生產(chǎn)效率降低,經(jīng)測算,新機(jī)器日均產(chǎn)品數(shù)提高的百分?jǐn)?shù)是舊機(jī)器日均產(chǎn)品數(shù)降低的百分?jǐn)?shù)的2倍,結(jié)果新機(jī)器生產(chǎn)960件產(chǎn)品所用的時(shí)間與舊機(jī)器生產(chǎn)540件產(chǎn)品所用的時(shí)間相同,求新機(jī)器日均產(chǎn)品比舊機(jī)器多多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤、每個(gè)轉(zhuǎn)盤被分成如圖所示的幾個(gè)扇形、游戲者同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,如果一個(gè)轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一轉(zhuǎn)盤轉(zhuǎn)出了藍(lán)色,游戲者就配成了紫色下列說法正確的是(  )

A. 兩個(gè)轉(zhuǎn)盤轉(zhuǎn)出藍(lán)色的概率一樣大

B. 如果A轉(zhuǎn)盤轉(zhuǎn)出了藍(lán)色,那么B轉(zhuǎn)盤轉(zhuǎn)出藍(lán)色的可能性變小了

C. 先轉(zhuǎn)動(dòng)A 轉(zhuǎn)盤再轉(zhuǎn)動(dòng)B 轉(zhuǎn)盤和同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,游戲者配成紫色的概率不同

D. 游戲者配成紫色的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】5月份開始,水蜜桃和夏橙兩種水果開始上市,根據(jù)市場調(diào)查,水蜜桃售價(jià)為20/千克,夏橙售價(jià)為15/千克.

1)某水果商城抓住商機(jī),開始銷售這兩種水果.若第一周水蜜桃的平均銷量比夏橙的平均銷量多100千克,要使該水果商城第一周銷售這兩周水果的總銷售額不低于9000元,則第一周至少銷售水蜜桃多少千克?

2)若該水果商城第一周按照(1)中水蜜桃和夏橙的最低銷量銷售這兩種水果,并決定第二周繼續(xù)銷售這兩種水果.第二周水蜜桃售價(jià)降低了,銷量比第一周增加了,夏橙的售價(jià)保持不變,銷量比第一周增加了.結(jié)果兩種水果第二周的總銷售額比第一周增加了,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解決下列問題

一艘船從甲碼頭到乙碼頭順流而行,用了2小時(shí);從乙碼頭返回甲碼頭逆流而行,用了2.5小時(shí),已知水流的速度為3千米/時(shí).

1)求船在靜水中的平均速度;

2)求甲,乙兩個(gè)碼頭之間的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向右移動(dòng)3個(gè)單位長度,再向左移動(dòng)5個(gè)單位長度,可以看到終點(diǎn)表示的數(shù)是-2,已知點(diǎn)A,B是數(shù)軸上的點(diǎn),請參照圖并思考,完成下列各題.

(1)如果點(diǎn)A表示數(shù)-3,將點(diǎn)A向右移動(dòng)7個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是_____,A,B兩點(diǎn)間的距離是_____;

(2)如果點(diǎn)A表示數(shù)3,將A點(diǎn)向左移動(dòng)7個(gè)單位長度,再向右移動(dòng)5個(gè)單位長度,那么終點(diǎn)表示的數(shù)是_____,A,B兩點(diǎn)間的距離為_____;

(3)如果點(diǎn)A表示數(shù)-4,將A點(diǎn)向右移動(dòng)168個(gè)單位長度,再向左移動(dòng)256個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是_____,A、B兩點(diǎn)間的距離是_____;

(4)一般地,如果A點(diǎn)表示的數(shù)為m,將A點(diǎn)向右移動(dòng)n個(gè)單位長度,再向左移動(dòng)p個(gè)單位長度,那么請你猜想終點(diǎn)B表示什么數(shù)?A,B兩點(diǎn)間的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光華中學(xué)庫存若干套桌椅,準(zhǔn)備修理后支援貧困山區(qū)學(xué)校.現(xiàn)有甲、乙兩修理組,甲修理組單獨(dú)完成任務(wù)需要12天,乙修理組單獨(dú)完成任務(wù)需要24.

1)若由甲、乙兩修理組同時(shí)修理,需多少天可以修好這些套桌椅?

2)若甲、乙兩修理組合作3天后,甲修理組因新任務(wù)離開,乙修理組繼續(xù)工作.甲完 成新任務(wù)后,回庫與乙又合作3天,恰好完成任務(wù).問:甲修理組離開幾天?

3)學(xué)校需要每天支付甲修理組、乙修理組修理費(fèi)分別為80元,120.任務(wù)完成后, 兩修理組收到的總費(fèi)用為1920元,求甲修理組修理了幾天?

查看答案和解析>>

同步練習(xí)冊答案