【題目】已知:在△ABC中,若△ABC的三邊a,b,c滿足 a:b: c=5:12:13,判斷△ABC的形狀.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報載,在“百萬家庭低碳行,垃圾分類要先行”活動中,某地區(qū)對隨機抽取的1000名公民的年齡段分布情況和對垃圾分類所持態(tài)度進行調(diào)查,并將調(diào)查結(jié)果分別繪成條形圖(圖1)、扇形圖(圖2).
(1)圖2中所缺少的百分數(shù)是 ;
(2)這次隨機調(diào)查中,如果公民年齡的中位數(shù)是正整數(shù),那么這個中位數(shù)所在年齡段是 ____ (填寫年齡段);
(3)這次隨機調(diào)查中,年齡段是“25歲以下”的公民中“不贊成”的有5名,它占“25歲以下”人數(shù)的百分數(shù)是 ___ ;
(4)如果把所持態(tài)度中的“很贊同”和“贊同”統(tǒng)稱為“支持”,那么這次被調(diào)查公民中“支持”的人有 ____名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x取( )時,代數(shù)式3(2-x)和2(3+x)的值相等。
A. 1 B. 2 C. -2 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)過(﹣2,4),(﹣4,4)兩點.
(1)求二次函數(shù)的解析式;
(2)將沿x軸翻折,再向右平移2個單位,得到拋物線,直線y=m(m>0)交于M、N兩點,求線段MN的長度(用含m的代數(shù)式表示);
(3)在(2)的條件下,、交于A、B兩點,如果直線y=m與、的圖象形成的封閉曲線交于C、D兩點(C在左側(cè)),直線y=﹣m與、的圖象形成的封閉曲線交于E、F兩點(E在左側(cè)),求證:四邊形CEFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圖像反映的過程是:甲乙兩人同時從地出發(fā),以各自的速度勻速向地行駛,甲先到地停留半小時后,按原路以另一速度勻速返回,直至與乙相遇.乙的速度為, 表示甲乙兩人相距的距離, 表示乙行駛的時間.現(xiàn)有以下個結(jié)論:①、兩地相距;②點的坐標為;③甲去時的速度為;④甲返回的速度是.以上個結(jié)論中正確的是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明所在教學(xué)樓的每層高度為3.5米,為了測量旗桿MN的高度,他在教學(xué)樓一樓的窗臺A處測得旗桿頂部M的仰角為45°,他在二樓窗臺B處測得M的仰角為31°,已知每層樓的窗臺離該層的地面高度均為1米,求旗桿MN的高度;(結(jié)果保留兩位小數(shù))
(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要求八年級同學(xué)在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓(xùn)練,為了了解八年級學(xué)生參加球類活動的整體情況,現(xiàn)以八年級2班作為樣本,對該班學(xué)生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:
根據(jù)圖中提供的信息,解答下列問題:
(1)a= ,b= ;
(2)該校八年級學(xué)生共有600人,則該年級參加足球活動的人數(shù)約 人;
(3)該班參加乒乓球活動的5位同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C兩點),將△ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結(jié)論中正確的有 (寫出所有正確結(jié)論的序號)
①△CMP∽△BPA;
②四邊形AMCB的面積最大值為10;
③當(dāng)P為BC中點時,AE為線段NP的中垂線;
④線段AM的最小值為;
⑤當(dāng)△ABP≌△ADN時,BP=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)看圖填空,并在括號內(nèi)注明理由依據(jù),
解: ∵∠1=30°, ∠2=30°
∴∠1=∠2
∴_______//________(_______________________________________)
又AC⊥AE(已知)
∴∠EAC=90°(______________)
∴∠EAB=∠EAC+∠1=120°
同理: ∠FBG=∠FBD+∠2=_________°.
∴∠EAB=∠FBG(_____________________________________).
∴______________//____________(同位角相等,兩直線平行)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com