【題目】(8分)看圖填空,并在括號內(nèi)注明理由依據(jù),

解: ∵∠1=30°, ∠2=30°

∴∠1=∠2

_______//_______________________________________________

又AC⊥AE(已知)

∴∠EAC=90°______________

∴∠EAB=∠EAC+∠1=120°

同理: ∠FBG=∠FBD+∠2=_________°.

∴∠EAB=∠FBG_____________________________________.

______________//____________(同位角相等,兩直線平行)

【答案】 AC BD 同位角相等,兩直線平行 垂直定義 120 等式性質(zhì) AE BF

【解析】解:∵∠1=30°,∠2=30°(已知),

∴∠1=∠2.

ACBD同位角相等,兩直線平行).

又∵ACAE(已知),

∴∠EAC=90°.( 垂直定義

∴∠EAB=∠EAC+∠1=120°.

同理:∠FBG=∠FBD+∠2=  120  °.

∴∠EAB=∠FBG 等式性質(zhì)  ).

AEBF(同位角相等,兩直線平行).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC中,若△ABC的三邊a,b,c滿足 a:b: c=5:12:13,判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y=(x﹣3)2﹣4的圖象,給出下列結(jié)論:①開口向上;②對稱軸是直線x=﹣3;③頂點坐標是(﹣3,﹣4);④與x軸有兩個交點.其中正確的結(jié)論是(  )

A. ①② B. ①④ C. ②③ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織學生書法比賽,對參賽作品按A、B、C、D四個等級進行了評定.現(xiàn)隨機取部分學生書法作品的評定結(jié)果進行分析,并繪制扇形統(tǒng)計圖和條形統(tǒng)計圖如下:

根據(jù)上述信息完成下列問題:

(1)求這次抽取的樣本的容量;

(2)請在圖②中把條形統(tǒng)計圖補充完整;

(3)已知該校這次活動共收到參賽作品750份,請你估計參賽作品達到B級以上(即A級和B級)有多少份?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)已知,在平面直角坐標系中,AB⊥x軸于點B,點A(a,b)滿足+|b-2|=0,平移線段AB使點A與原點重合,點B的對應點為點C.

(1)則a=____,b=____;點C坐標為________;

(2)如下圖所示:點D(m, n)在線段BC上,求m、n滿足的關(guān)系式;

(3)如下圖所示:E是線段OB上一動點,以OB為邊作∠G=∠AOB,,交BC于點G,連CE交OG于點F,的當點E在線段OB上運動過程中, 的值是否會發(fā)生變化?若變化請說明理由,若不變,請求出其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCDEF全等,BC=EF=4cm,ABC的面積是12cm2 EF邊上的高是(

A. 3cm B. 4cm C. 6cm D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把方程xx﹣1)=2(x﹣2)化為一元二次方程的一般形式為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點Pm,n)在第二象限,則點Qnm)在( 。

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列條件,得不到平行四邊形的是(

A.ABCD,ADBCB.ABCD,ABCD

C.ABCDADBCD.ABCD,ADBC

查看答案和解析>>

同步練習冊答案